
C++ Object Persistence with ODB

Copyright © 2009-2025 Code Synthesis.

Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, version 1.3; with no Invariant Sections, no Front-Cover Texts

and no Back-Cover Texts.

Revision 2.6, March 2025

This revision of the manual describes ODB 2.6.0 and is available in the following formats:

XHTML, PDF, and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.3.txt
http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/

Table of Contents

................... 1Preface

.............. 1About This Document

............... 2More Information

.......... 3PART I OBJECT-RELATIONAL MAPPING

................. 41 Introduction

............ 51.1 Architecture and Workflow

................. 81.2 Benefits

............. 91.3 Supported C++ Standards

............... 102 Hello World Example

............ 102.1 Declaring Persistent Classes

........... 132.2 Generating Database Support Code

............. 142.3 Compiling and Running

............. 152.4 Making Objects Persistent

........... 192.5 Querying the Database for Objects

............ 212.6 Updating Persistent Objects

............. 232.7 Defining and Using Views

............ 252.8 Deleting Persistent Objects

............ 262.9 Changing Persistent Classes

........... 282.10 Working with Multiple Databases

................ 302.11 Summary

............. 313 Working with Persistent Objects

............ 313.1 Concepts and Terminology

.......... 333.2 Declaring Persistent Objects and Values

............. 363.3 Object and View Pointers

................ 383.4 Database

................ 413.5 Transactions

................ 463.6 Connections

............ 483.7 Error Handling and Recovery

............. 493.8 Making Objects Persistent

............ 513.9 Loading Persistent Objects

............ 523.10 Updating Persistent Objects

............ 543.11 Deleting Persistent Objects

........... 573.12 Executing Native SQL Statements

........... 573.13 Tracing SQL Statement Execution

.............. 603.14 ODB Exceptions

............... 674 Querying the Database

............. 684.1 ODB Query Language

.............. 704.2 Parameter Binding

.............. 714.3 Executing a Query

................ 744.4 Query Result

iRevision 2.6, March 2025 C++ Object Persistence with ODB

Table of Contents

................ 784.5 Prepared Queries

................... 875 Containers

............... 885.1 Ordered Containers

.............. 905.2 Set and Multiset Containers

............. 915.3 Map and Multimap Containers

............. 925.4 Change-Tracking Containers

............ 955.4.1 Change-Tracking vector

.............. 985.5 Using Custom Containers

.................. 996 Relationships

............. 1026.1 Unidirectional Relationships

............. 1036.1.1 To-One Relationships

............. 1036.1.2 To-Many Relationships

.............. 1056.2 Bidirectional Relationships

............. 1086.2.1 One-to-One Relationships

............ 1096.2.2 One-to-Many Relationships

............ 1106.2.3 Many-to-Many Relationships

............... 1116.3 Circular Relationships

................. 1146.4 Lazy Pointers

............. 1196.5 Using Custom Smart Pointers

................... 1217 Value Types

............... 1217.1 Simple Value Types

.............. 1217.2 Composite Value Types

............. 1257.2.1 Composite Object Ids

........ 1257.2.2 Composite Value Column and Table Names

............ 1287.3 Pointers and NULL Value Semantics

................... 1338 Inheritance

................ 1358.1 Reuse Inheritance

.............. 1378.2 Polymorphism Inheritance

............ 1428.2.1 Performance and Limitations

................ 1458.3 Mixed Inheritance

................... 1469 Sections

.............. 1539.1 Sections and Inheritance

............ 1559.2 Sections and Optimistic Concurrency

.............. 1579.3 Sections and Lazy Pointers

.......... 1579.4 Sections and Change-Tracking Containers

.................... 15910 Views

................. 16110.1 Object Views

............... 16710.2 Object Loading Views

................. 17410.3 Table Views

................. 17710.4 Mixed Views

.............. 17810.5 View Query Conditions

................. 18010.6 Native Views

........... 18210.7 Other View Features and Limitations

Revision 2.6, March 2025ii C++ Object Persistence with ODB

Table of Contents

................... 18411 Session

................. 18711.1 Object Cache

................ 18811.2 Custom Sessions

................ 19112 Optimistic Concurrency

............... 19713 Database Schema Evolution

........... 19813.1 Object Model Version and Changelog

............... 20613.2 Schema Migration

................ 21413.3 Data Migration

............. 21513.3.1 Immediate Data Migration

.............. 22213.3.2 Gradual Data Migration

............. 22413.4 Soft Object Model Changes

............. 23013.4.1 Reuse Inheritance Changes

........... 23213.4.2 Polymorphism Inheritance Changes

................ 23314 ODB Pragma Language

............... 23614.1 Object Type Pragmas

................ 23614.1.1 table

................ 23714.1.2 pointer

............... 23814.1.3 abstract

............... 23914.1.4 readonly

............... 23914.1.5 optimistic

................ 24014.1.6 no_id

............... 24014.1.7 callback

................ 24214.1.8 schema

.............. 24614.1.9 polymorphic

............... 24614.1.10 session

.............. 24714.1.11 definition

............... 24714.1.12 transient

.............. 24714.1.13 sectionable

............... 24714.1.14 deleted

................ 24714.1.15 bulk

............... 24814.1.16 options

............... 24814.2 View Type Pragmas

................ 24914.2.1 object

................ 24914.2.2 table

................ 24914.2.3 query

................ 24914.2.4 pointer

............... 24914.2.5 callback

............... 24914.2.6 definition

............... 25014.2.7 transient

............... 25014.3 Value Type Pragmas

................. 25214.3.1 type

................ 25214.3.2 id_type

.............. 25314.3.3 null/not_null

iiiRevision 2.6, March 2025 C++ Object Persistence with ODB

Table of Contents

................ 25414.3.4 default

................ 25514.3.5 options

............... 25514.3.6 readonly

............... 25514.3.7 definition

............... 25714.3.8 transient

............... 25714.3.9 unordered

.............. 25714.3.10 index_type

............... 25714.3.11 key_type

.............. 25714.3.12 value_type

.......... 25814.3.13 value_null/value_not_null

.............. 25814.3.14 id_options

............. 25814.3.15 index_options

.............. 25914.3.16 key_options

............. 25914.3.17 value_options

............... 25914.3.18 id_column

.............. 25914.3.19 index_column

.............. 26014.3.20 key_column

.............. 26014.3.21 value_column

.............. 26014.4 Data Member Pragmas

................. 26214.4.1 id

................. 26214.4.2 auto

................. 26314.4.3 type

................ 26314.4.4 id_type

.............. 26414.4.5 get/set/access

.............. 26814.4.6 null/not_null

................ 26914.4.7 default

................ 27114.4.8 options

.......... 27214.4.9 column (object, composite value)

.............. 27214.4.10 column (view)

............... 27214.4.11 transient

............... 27314.4.12 readonly

............... 27414.4.13 virtual

............... 27914.4.14 inverse

............... 28014.4.15 on_delete

............... 28214.4.16 version

................ 28214.4.17 index

................ 28314.4.18 unique

............... 28314.4.19 unordered

................ 28414.4.20 table

.............. 28414.4.21 load/update

............... 28514.4.22 section

................ 28514.4.23 added

............... 28514.4.24 deleted

Revision 2.6, March 2025iv C++ Object Persistence with ODB

Table of Contents

.............. 28514.4.25 index_type

............... 28514.4.26 key_type

.............. 28614.4.27 value_type

.......... 28614.4.28 value_null/value_not_null

.............. 28714.4.29 id_options

............. 28714.4.30 index_options

.............. 28814.4.31 key_options

............. 28814.4.32 value_options

............... 28814.4.33 id_column

.............. 28914.4.34 index_column

.............. 28914.4.35 key_column

.............. 28914.4.36 value_column

............... 29014.4.37 points_to

............... 29014.5 Namespace Pragmas

................ 29114.5.1 pointer

................ 29214.5.2 table

................ 29314.5.3 schema

................ 29314.5.4 session

.............. 29414.6 Object Model Pragmas

................ 29414.6.1 version

.............. 29414.7 Index Definition Pragmas

............ 29814.8 Database Type Mapping Pragmas

............ 29814.8.1 C++ Type Mapping Pragmas

........... 29914.8.2 Database Type Mapping Pragmas

.............. 30314.9 C++ Compiler Warnings

................ 30414.9.1 GNU C++

............... 30414.9.2 Visual C++

................ 30514.9.3 Sun C++

............... 30514.9.4 IBM XL C++

................ 30514.9.5 HP aC++

................. 30514.9.6 Clang

............ 30715 Advanced Techniques and Mechanisms

............... 30715.1 Transaction Callbacks

........... 31015.2 Persistent Class Template Instantiations

.............. 31115.3 Bulk Database Operations

.............. 319PART II DATABASE SYSTEMS

................ 32016 Multi-Database Support

............. 32316.1 Static Multi-Database Support

............ 32616.2 Dynamic Multi-Database Support

........ 32916.2.2 Dynamic Loading of Database Support Code

................. 33217 MySQL Database

.............. 33217.1 MySQL Type Mapping

............. 33417.1.1 String Type Mapping

vRevision 2.6, March 2025 C++ Object Persistence with ODB

Table of Contents

............. 33417.1.2 Binary Type Mapping

......... 33517.1.3 Mixed Automatic/0 Object Id Assignment

.............. 33617.2 MySQL Database Class

.......... 33917.3 MySQL Connection and Connection Factory

............... 34217.4 MySQL Exceptions

............... 34317.5 MySQL Limitations

............. 34317.5.1 Foreign Key Constraints

.............. 34417.6 MySQL Index Definitions

.............. 34417.7 MySQL Stored Procedures

................. 34718 SQLite Database

............... 34718.1 SQLite Type Mapping

............. 34918.1.1 String Type Mapping

............. 35018.1.2 Binary Type Mapping

............ 35118.1.3 Incremental BLOB/TEXT I/O

....... 35718.1.4 Mixed Automatic/Manual Object Id Assignment

.............. 35718.2 SQLite Database Class

.......... 36018.3 SQLite Connection and Connection Factory

............. 36518.4 Attached SQLite Databases

............... 36718.5 SQLite Exceptions

............... 36818.6 SQLite Limitations

............. 36818.6.1 Query Result Caching

.......... 36818.6.2 Automatic Assignment of Object Ids

............. 36918.6.3 Foreign Key Constraints

............. 37018.6.4 Constraint Violations

.............. 37018.6.5 Sharing of Queries

.............. 37018.6.6 Forced Rollback

............ 37118.6.7 Database Schema Evolution

.............. 37218.7 SQLite Index Definitions

................ 37319 PostgreSQL Database

............. 37319.1 PostgreSQL Type Mapping

............. 37519.1.1 String Type Mapping

........... 37619.1.2 Binary Type and UUID Mapping

............. 37719.2 PostgreSQL Database Class

......... 38019.3 PostgreSQL Connection and Connection Factory

.............. 38319.4 PostgreSQL Exceptions

.............. 38419.5 PostgreSQL Limitations

............. 38419.5.1 Query Result Caching

............. 38419.5.2 Foreign Key Constraints

............ 38519.5.3 Unique Constraint Violations

.............. 38519.5.4 Date-Time Format

................ 38519.5.5 Timezones

............. 38519.5.6 NUMERIC Type Support

............ 38519.5.7 Bulk Operations Support

Revision 2.6, March 2025vi C++ Object Persistence with ODB

Table of Contents

............. 38519.6 PostgreSQL Index Definitions

......... 38619.7 PostgreSQL Stored Procedures and Functions

................. 39120 Oracle Database

............... 39120.1 Oracle Type Mapping

............. 39220.1.1 String Type Mapping

............. 39320.1.2 Binary Type Mapping

............... 39420.2 Oracle Database Class

.......... 39720.3 Oracle Connection and Connection Factory

............... 40120.4 Oracle Exceptions

............... 40220.5 Oracle Limitations

............. 40220.5.1 Identifier Truncation

............. 40320.5.2 Query Result Caching

............. 40320.5.3 Foreign Key Constraints

............ 40420.5.4 Unique Constraint Violations

.......... 40420.5.5 Large FLOAT and NUMBER Types

................ 40420.5.6 Timezones

............... 40520.5.7 LONG Types

....... 40520.5.8 LOB Types and By-Value Accessors/Modifiers

............ 40520.5.9 Database Schema Evolution

.............. 40520.6 Oracle Index Definitions

.............. 40721 Microsoft SQL Server Database

.............. 40721.1 SQL Server Type Mapping

............. 40921.1.1 String Type Mapping

....... 41021.1.2 Binary Type and UNIQUEIDENTIFIER Mapping

............. 41121.1.3 ROWVERSION Mapping

........... 41221.1.4 Long String and Binary Types

............. 41321.2 SQL Server Database Class

......... 41921.3 SQL Server Connection and Connection Factory

.............. 42321.4 SQL Server Exceptions

.............. 42421.5 SQL Server Limitations

............. 42421.5.1 Query Result Caching

............. 42521.5.2 Foreign Key Constraints

............ 42521.5.3 Unique Constraint Violations

......... 42521.5.4 Multi-threaded Windows Applications

......... 42521.5.5 Affected Row Count and DDL Statements

....... 42521.5.6 Long Data and Auto Object Ids, ROWVERSION

........ 42621.5.7 Long Data and By-Value Accessors/Modifiers

........... 42621.5.8 Bulk Update and ROWVERSION

............. 42621.6 SQL Server Index Definitions

............. 42721.7 SQL Server Stored Procedures

................. 430PART III PROFILES

................ 43122 Profiles Introduction

.................. 43223 Boost Profile

viiRevision 2.6, March 2025 C++ Object Persistence with ODB

Table of Contents

.............. 43223.1 Smart Pointers Library

............. 43323.2 Unordered Containers Library

............. 43423.3 Multi-Index Container Library

................ 43523.4 Optional Library

............... 43623.5 Date Time Library

........... 43723.5.1 MySQL Database Type Mapping

........... 43823.5.2 SQLite Database Type Mapping

.......... 43923.5.3 PostgreSQL Database Type Mapping

........... 44023.5.4 Oracle Database Type Mapping

.......... 44123.5.5 SQL Server Database Type Mapping

................. 44223.6 Uuid Library

........... 44223.6.1 MySQL Database Type Mapping

........... 44223.6.2 SQLite Database Type Mapping

.......... 44323.6.3 PostgreSQL Database Type Mapping

........... 44323.6.4 Oracle Database Type Mapping

.......... 44323.6.5 SQL Server Database Type Mapping

................... 44424 Qt Profile

............... 44424.1 Basic Types Library

........... 44524.1.1 MySQL Database Type Mapping

........... 44624.1.2 SQLite Database Type Mapping

.......... 44624.1.3 PostgreSQL Database Type Mapping

........... 44724.1.4 Oracle Database Type Mapping

.......... 44724.1.5 SQL Server Database Type Mapping

.............. 44824.2 Smart Pointers Library

............... 44924.3 Containers Library

............ 45024.3.1 Change-Tracking QList

............... 45324.4 Date Time Library

........... 45424.4.1 MySQL Database Type Mapping

........... 45524.4.2 SQLite Database Type Mapping

.......... 45624.4.3 PostgreSQL Database Type Mapping

........... 45624.4.4 Oracle Database Type Mapping

.......... 45724.4.5 SQL Server Database Type Mapping

Revision 2.6, March 2025viii C++ Object Persistence with ODB

Table of Contents

Preface

As more critical aspects of our lives become dependant on software systems, more and more

applications are required to save the data they work on in persistent and reliable storage. Database

management systems and, in particular, relational database management systems (RDBMS) are

commonly used for such storage. However, while the application development techniques and

programming languages have evolved significantly over the past decades, the relational database

technology in this area stayed relatively unchanged. In particular, this led to the now infamous

mismatch between the object-oriented model used by many modern applications and the rela­

tional model still used by RDBMS.

While relational databases may be inconvenient to use from modern programming languages,

they are still the main choice for many applications due to their maturity, reliability, as well as the

availability of tools and alternative implementations.

To allow application developers to utilize relational databases from their object-oriented applica­

tions, a technique called object-relational mapping (ORM) is often used. It involves a conversion

layer that maps between objects in the application’s memory and their relational representation in

the database. While the object-relational mapping code can be written manually, automated ORM

systems are available for most object-oriented programming languages in use today.

ODB is an ORM system for the C++ programming language. It was designed and implemented

with the following main goals:

Provide a fully-automatic ORM system. In particular, the application developer should not

have to manually write any mapping code, neither for persistent classes nor for their data

member.

Provide clean and easy to use object-oriented persistence model and database APIs that

support the development of realistic applications for a wide variety of domains.

Provide a portable and thread-safe implementation. ODB should be written in standard C++

and capable of persisting any standard C++ classes.

Provide profiles that integrate ODB with type systems of widely-used frameworks and

libraries such as Qt and Boost.

Provide a high-performance and low overhead implementation. ODB should make efficient

use of database and application resources.

About This Document

The goal of this manual is to provide you with an understanding of the object persistence model

and APIs which are implemented by ODB. As such, this document is intended for C++ applica­

tion developers and software architects who are looking for a C++ object persistence solution.

Prior experience with C++ is required to understand this document. A basic understanding of

1Revision 2.6, March 2025 C++ Object Persistence with ODB

Preface

relational database systems is advantageous but not expected or required.

More Information

Beyond this manual, you may also find the following sources of information useful:

ODB Compiler Command Line Manual.

The INSTALL files in the ODB source packages provide build instructions for various plat­

forms.

The odb-examples package contains a collection of examples and a README file with

an overview of each example.

The odb-users mailing list is the place to ask technical questions about ODB. Furthermore,

the searchable archives may already have answers to some of your questions.

Revision 2.6, March 20252 C++ Object Persistence with ODB

More Information

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/

PART I OBJECT-RELATIONAL MAPPING

Part I describes the essential database concepts, APIs, and tools that together comprise the

object-relational mapping for C++ as implemented by ODB. It consists of the following chapters.

1 Introduction

2 Hello World Example

3 Working with Persistent Objects

4 Querying the Database

5 Containers

6 Relationships

7 Value Types

8 Inheritance

10 Views

11 Session

12 Optimistic Concurrency

13 Database Schema Evolution

14 ODB Pragma Language

3Revision 2.6, March 2025 C++ Object Persistence with ODB

PART I OBJECT-RELATIONAL MAPPING

1 Introduction

ODB is an object-relational mapping (ORM) system for C++. It provides tools, APIs, and library

support that allow you to persist C++ objects to a relational database (RDBMS) without having to

deal with tables, columns, or SQL and without manually writing any of the mapping code.

ODB is highly flexible and customizable. It can either completely hide the relational nature of the

underlying database or expose some of the details as required. For example, you can automati­

cally map basic C++ types to suitable SQL types, generate the relational database schema for

your persistent classes, and use simple, safe, and yet powerful object query language instead of

SQL. Or you can assign SQL types to individual data members, use the existing database schema,

run native SQL SELECT queries, and call stored procedures. In fact, at an extreme, ODB can be

used as just a convenient way to handle results of native SQL queries.

ODB is not a framework. It does not dictate how you should write your application. Rather, it is

designed to fit into your style and architecture by only handling object persistence and not inter­

fering with any other functionality. There is no common base type that all persistent classes

should derive from nor are there any restrictions on the data member types in persistent classes.

Existing classes can be made persistent with a few or no modifications.

ODB has been designed for high performance and low memory overhead. Prepared statements

are used to send and receive object state in binary format instead of text which reduces the load

on the application and the database server. Extensive caching of connections, prepared state­

ments, and buffers saves time and resources on connection establishment, statement parsing, and

memory allocations. For each supported database system the native C API is used instead of

ODBC or higher-level wrapper APIs to reduce overhead and provide the most efficient imple­

mentation for each database operation. Finally, persistent classes have zero memory overhead.

There are no hidden "database" members that each class must have nor are there per-object data

structures allocated by ODB.

In this chapter we present a high-level overview of ODB. We will start with the ODB architecture

and then outline the workflow of building an application that uses ODB. We will then continue

by contrasting the drawbacks of the traditional way of saving C++ objects to relational databases

with the benefits of using ODB for object persistence. We conclude the chapter by discussing the

C++ standards supported by ODB. The next chapter takes a more hands-on approach and shows

the concrete steps necessary to implement object persistence in a simple "Hello World" applica­

tion.

Revision 2.6, March 20254 C++ Object Persistence with ODB

1 Introduction

1.1 Architecture and Workflow

From the application developer’s perspective, ODB consists of three main components: the ODB

compiler, the common runtime library, called libodb, and the database-specific runtime

libraries, called libodb-<database>, where <database> is the name of the database system

this runtime is for, for example, libodb-mysql. For instance, if the application is going to use

the MySQL database for object persistence, then the three ODB components that this application

will use are the ODB compiler, libodb and libodb-mysql.

The ODB compiler generates the database support code for persistent classes in your application.

The input to the ODB compiler is one or more C++ header files defining C++ classes that you

want to make persistent. For each input header file the ODB compiler generates a set of C++

source files implementing conversion between persistent C++ classes defined in this header and

their database representation. The ODB compiler can also generate a database schema file that

creates tables necessary to store the persistent classes.

The ODB compiler is a real C++ compiler except that it produces C++ instead of assembly or

machine code. In particular, it is not an ad-hoc header pre-processor that is only capable of recog­

nizing a subset of C++. ODB is capable of parsing any standard C++ code.

The common runtime library defines database system-independent interfaces that your applica­

tion can use to manipulate persistent objects. The database-specific runtime library provides

implementations of these interfaces for a concrete database as well as other database-specific util­

ities that are used by the generated code. Normally, the application does not use the

database-specific runtime library directly but rather works with it via the common interfaces from

libodb. The following diagram shows the object persistence architecture of an application that

uses MySQL as the underlying database system:

5Revision 2.6, March 2025 C++ Object Persistence with ODB

1.1 Architecture and Workflow

The ODB system also defines two special-purpose languages: the ODB Pragma Language and

ODB Query Language. The ODB Pragma Language is used to communicate various properties of

persistent classes to the ODB compiler by means of special #pragma directives embedded in the

C++ header files. It controls aspects of the object-relational mapping such as names of tables and

columns that are used for persistent classes and their members or mapping between C++ types

and database types.

The ODB Query Language is an object-oriented database query language that can be used to

search for objects matching certain criteria. It is modeled after and is integrated into C++ allow­

ing you to write expressive and safe queries that look and feel like ordinary C++.

The use of the ODB compiler to generate database support code adds an additional step to your

application build sequence. The following diagram outlines the typical build workflow of an

application that uses ODB:

Revision 2.6, March 20256 C++ Object Persistence with ODB

1.1 Architecture and Workflow

7Revision 2.6, March 2025 C++ Object Persistence with ODB

1.1 Architecture and Workflow

1.2 Benefits

The traditional way of saving C++ objects to relational databases requires that you manually

write code which converts between the database and C++ representations of each persistent class.

The actions that such code usually performs include conversion between C++ values and strings

or database types, preparation and execution of SQL queries, as well as handling the result sets.

Writing this code manually has the following drawbacks:

Difficult and time consuming. Writing database conversion code for any non-trivial appli­

cation requires extensive knowledge of the specific database system and its APIs. It can also

take a considerable amount of time to write and maintain. Supporting multi-threaded appli­

cations can complicate this task even further.

Suboptimal performance. Optimal conversion often requires writing large amounts of extra

code, such as parameter binding for prepared statements and caching of connections, state­

ments, and buffers. Writing code like this in an ad-hoc manner is often too difficult and time

consuming.

Database vendor lock-in. The conversion code is written for a specific database which

makes it hard to switch to another database vendor.

Lack of type safety. It is easy to misspell column names or pass incompatible values in

SQL queries. Such errors will only be detected at runtime.

Complicates the application. The database conversion code often ends up interspersed

throughout the application making it hard to debug, change, and maintain.

In contrast, using ODB for C++ object persistence has the following benefits:

Ease of use. ODB automatically generates database conversion code from your C++ class

declarations and allows you to manipulate persistent objects using simple and thread-safe

object-oriented database APIs.

Concise code. With ODB hiding the details of the underlying database, the application logic

is written using the natural object vocabulary instead of tables, columns and SQL. The

resulting code is simpler and thus easier to read and understand.

Optimal performance. ODB has been designed for high performance and low memory

overhead. All the available optimization techniques, such as prepared statements and exten­

sive connection, statement, and buffer caching, are used to provide the most efficient imple­

mentation for each database operation.

Database portability. Because the database conversion code is automatically generated, it is

easy to switch from one database vendor to another. In fact, it is possible to test your appli­

cation on several database systems before making a choice.

Safety. The ODB object persistence and query APIs are statically typed. You use C++ iden­

tifiers instead of strings to refer to object members and the generated code makes sure

database and C++ types are compatible. All this helps catch programming errors at

compile-time rather than at runtime.

Revision 2.6, March 20258 C++ Object Persistence with ODB

1.2 Benefits

Maintainability. Automatic code generation minimizes the effort needed to adapt the appli­

cation to changes in persistent classes. The database support code is kept separately from the

class declarations and application logic. This makes the application easier to debug and

maintain.

Overall, ODB provides an easy to use yet flexible and powerful object-relational mapping (ORM)

system for C++. Unlike other ORM implementations for C++ that still require you to write

database conversion or member registration code for each persistent class, ODB keeps persistent

classes purely declarative. The functional part, the database conversion code, is automatically

generated by the ODB compiler from these declarations.

1.3 Supported C++ Standards

ODB provides support for ISO/IEC C++ 1998/2003 (C++98/03), ISO/IEC C++ 2011 (C++11), as

well later standards with the majority of the examples in this manual using C++11. The c++11
example in the odb-examples package shows ODB support for various features new in

C++11.

9Revision 2.6, March 2025 C++ Object Persistence with ODB

1.3 Supported C++ Standards

2 Hello World Example

In this chapter we will show how to create a simple C++ application that relies on ODB for object

persistence using the traditional "Hello World" example. In particular, we will discuss how to

declare persistent classes, generate database support code, as well as compile and run our applica­

tion. We will also learn how to make objects persistent, load, update and delete persistent objects,

as well as query the database for persistent objects that match certain criteria. The example also

shows how to define and use views, a mechanism that allows us to create projections of persistent

objects, database tables, or to handle results of native SQL queries or stored procedure calls.

The code presented in this chapter is based on the hello example which can be found in the

odb-examples package of the ODB distribution.

2.1 Declaring Persistent Classes

In our "Hello World" example we will depart slightly from the norm and say hello to people

instead of the world. People in our application will be represented as objects of C++ class

person which is saved in person.hxx:

// person.hxx
//

#include <string>

class person
{
public:
 person (const std::string& first,
 const std::string& last,
 unsigned short age);

 const std::string& first () const;
 const std::string& last () const;

 unsigned short age () const;
 void age (unsigned short);

private:
 std::string first_;
 std::string last_;
 unsigned short age_;
};

In order not to miss anyone whom we need to greet, we would like to save the person objects in

a database. To achieve this we declare the person class as persistent:

Revision 2.6, March 202510 C++ Object Persistence with ODB

2 Hello World Example

// person.hxx
//

#include <string>

#include <odb/core.hxx> // (1)

#pragma db object // (2)
class person
{
 ...

private:
 person () {} // (3)

 friend class odb::access; // (4)

 #pragma db id auto // (5)
 unsigned long long id_; // (5)

 std::string first_;
 std::string last_;
 unsigned short age_;
};

To be able to save the person objects in the database we had to make five changes, marked with

(1) to (5), to the original class definition. The first change is the inclusion of the ODB header

<odb/core.hxx>. This header provides a number of core ODB declarations, such as

odb::access, that are used to define persistent classes.

The second change is the addition of db object pragma just before the class definition. This

pragma tells the ODB compiler that the class that follows is persistent. Note that making a class

persistent does not mean that all objects of this class will automatically be stored in the database.

You would still create ordinary or transient instances of this class just as you would before. The

difference is that now you can make such transient instances persistent, as we will see shortly.

The third change is the addition of the default constructor. The ODB-generated database support

code will use this constructor when instantiating an object from the persistent state. Just as we

have done for the person class, you can make the default constructor private or protected if you

don’t want to make it available to the users of your class. Note also that with some limitations it

is possible to have a persistent class without the default constructor.

With the fourth change we make the odb::access class a friend of our person class. This is

necessary to make the default constructor and the data members accessible to the database

support code. If your class has a public default constructor and either public data members or

public accessors and modifiers for the data members, then the friend declaration is unneces­

sary.

11Revision 2.6, March 2025 C++ Object Persistence with ODB

2.1 Declaring Persistent Classes

The final change adds a data member called id_ which is preceded by another pragma. In ODB

every persistent object normally has a unique, within its class, identifier. Or, in other words, no

two persistent instances of the same type have equal identifiers. While it is possible to define a

persistent class without an object id, the number of database operations that can be performed on

such a class is limited. For our class we use an integer id. The db id auto pragma that

precedes the id_ member tells the ODB compiler that the following member is the object’s iden­

tifier. The auto specifier indicates that it is a database-assigned id. A unique id will be automati­

cally generated by the database and assigned to the object when it is made persistent.

In this example we chose to add an identifier because none of the existing members could serve

the same purpose. However, if a class already has a member with suitable properties, then it is

natural to use that member as an identifier. For example, if our person class contained some

form of personal identification (SSN in the United States or ID/passport number in other coun­

tries), then we could use that as an id. Or, if we stored an email associated with each person, then

we could have used that if each person is presumed to have a unique email address.

As another example, consider the following alternative version of the person class. Here we use

one of the existing data members as id. Also the data members are kept private and are instead

accessed via public accessor and modifier functions. Finally, the ODB pragmas are grouped

together and are placed after the class definition. They could have also been moved into a sepa­

rate header leaving the original class completely unchanged (for more information on such a

non-intrusive conversion refer to Chapter 14, "ODB Pragma Language").

class person
{
public:
 person ();

 const std::string& email () const;
 void email (const std::string&);

 const std::string& get_name () const;
 std::string& set_name ();

 unsigned short getAge () const;
 void setAge (unsigned short);

private:
 std::string email_;
 std::string name_;
 unsigned short age_;
};

#pragma db object(person)
#pragma db member(person::email_) id

Revision 2.6, March 202512 C++ Object Persistence with ODB

2.1 Declaring Persistent Classes

Now that we have the header file with the persistent class, let’s see how we can generate that

database support code.

2.2 Generating Database Support Code

The persistent class definition that we created in the previous section was particularly light on any

code that could actually do the job and store the person’s data to a database. There was no serial­

ization or deserialization code, not even data member registration, that you would normally have

to write by hand in other ORM libraries for C++. This is because in ODB code that translates

between the database and C++ representations of an object is automatically generated by the

ODB compiler.

To compile the person.hxx header we created in the previous section and generate the support

code for the MySQL database, we invoke the ODB compiler from a terminal (UNIX) or a

command prompt (Windows):

odb -d mysql --generate-query person.hxx

We will use MySQL as the database of choice in the remainder of this chapter, though other

supported database systems can be used instead.

If you haven’t installed the common ODB runtime library (libodb) or installed it into a direc­

tory where C++ compilers don’t search for headers by default, then you may get the following

error:

person.hxx:10:24: fatal error: odb/core.hxx: No such file or directory

To resolve this you will need to specify the libodb headers location with the -I preprocessor

option, for example:

odb -I.../libodb -d mysql --generate-query person.hxx

Here .../libodb represents the path to the libodb directory.

The above invocation of the ODB compiler produces three C++ files: person-odb.hxx,

person-odb.ixx, person-odb.cxx. You normally don’t use types or functions contained

in these files directly. Rather, all you have to do is include person-odb.hxx in C++ files

where you are performing database operations with classes from person.hxx as well as

compile person-odb.cxx and link the resulting object file to your application.

You may be wondering what the --generate-query option is for. It instructs the ODB

compiler to generate optional query support code that we will use later in our "Hello World"

example. Another option that we will find useful is --generate-schema. This option makes

the ODB compiler generate a fourth file, person.sql, which is the database schema for the

persistent classes defined in person.hxx:

13Revision 2.6, March 2025 C++ Object Persistence with ODB

2.2 Generating Database Support Code

odb -d mysql --generate-query --generate-schema person.hxx

The database schema file contains SQL statements that creates tables necessary to store the

persistent classes. We will learn how to use it in the next section.

If you would like to see a list of all the available ODB compiler options, refer to the ODB

Compiler Command Line Manual.

Now that we have the persistent class and the database support code, the only part that is left is

the application code that does something useful with all of this. But before we move on to the fun

part, let’s first learn how to build and run an application that uses ODB. This way when we have

some application code to try, there are no more delays before we can run it.

2.3 Compiling and Running

Assuming that the main() function with the application code is saved in driver.cxx and the

database support code and schema are generated as described in the previous section, to build our

application we will first need to compile all the C++ source files and then link them with two

ODB runtime libraries.

On UNIX, the compilation part can be done with the following commands (substitute c++ with

your C++ compiler name; for Microsoft Visual Studio setup, see the odb-examples package):

c++ -c driver.cxx
c++ -c person-odb.cxx

Similar to the ODB compilation, if you get an error stating that a header in odb/ or odb/mysql

directory is not found, you will need to use the -I preprocessor option to specify the location of

the common ODB runtime library (libodb) and MySQL ODB runtime library

(libodb-mysql).

Once the compilation is done, we can link the application with the following command:

c++ -o driver driver.o person-odb.o -lodb-mysql -lodb

Notice that we link our application with two ODB libraries: libodb which is a common runtime

library and libodb-mysql which is a MySQL runtime library (if you use another database,

then the name of this library will change accordingly). If you get an error saying that one of these

libraries could not be found, then you will need to use the -L linker option to specify their loca­

tions.

Before we can run our application we need to create a database schema using the generated

person.sql file. For MySQL we can use the mysql client program, for example:

Revision 2.6, March 202514 C++ Object Persistence with ODB

2.3 Compiling and Running

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/products/odb/doc/odb.xhtml

mysql --user=odb_test --database=odb_test < person.sql

The above command will log in to a local MySQL server as user odb_test without a password

and use the database named odb_test. Beware that after executing this command, all the data

stored in the odb_test database will be deleted.

Note also that using a standalone generated SQL file is not the only way to create a database

schema in ODB. We can also embed the schema directly into our application or use custom

schemas that were not generated by the ODB compiler. Refer to Section 3.4, "Database" for

details.

Once the database schema is ready, we run our application using the same login and database

name:

./driver --user odb_test --database odb_test

2.4 Making Objects Persistent

Now that we have the infrastructure work out of the way, it is time to see our first code fragment

that interacts with the database. In this section we will learn how to make person objects persis­

tent:

// driver.cxx
//

#include <memory> // std::unique_ptr
#include <iostream>

#include <odb/database.hxx>
#include <odb/transaction.hxx>

#include <odb/mysql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

int
main (int argc, char* argv[])
{
 try
 {
 unique_ptr<database> db (new odb::mysql::database (argc, argv));

 unsigned long long john_id, jane_id, joe_id;

15Revision 2.6, March 2025 C++ Object Persistence with ODB

2.4 Making Objects Persistent

 // Create a few persistent person objects.
 //
 {
 person john ("John", "Doe", 33);
 person jane ("Jane", "Doe", 32);
 person joe ("Joe", "Dirt", 30);

 transaction t (db->begin ());

 // Make objects persistent and save their ids for later use.
 //
 john_id = db->persist (john);
 jane_id = db->persist (jane);
 joe_id = db->persist (joe);

 t.commit ();
 }
 }
 catch (const odb::exception& e)
 {
 cerr << e.what () << endl;
 return 1;
 }
}

Let’s examine this code piece by piece. At the beginning we include a bunch of headers. After the

standard C++ headers we include <odb/database.hxx> and <odb/transaction.hxx>
which define database system-independent odb::database and odb::transaction inter­

faces. Then we include <odb/mysql/database.hxx> which defines the MySQL imple­

mentation of the database interface. Finally, we include person.hxx and

person-odb.hxx which define our persistent person class.

Then we have two using namespace directives. The first one brings in the names from the

standard namespace and the second brings in the ODB declarations which we will use later in the

file. Notice that in the second directive we use the odb::core namespace instead of just odb.

The former only brings into the current namespace the essential ODB names, such as the

database and transaction classes, without any of the auxiliary objects. This minimizes the

likelihood of name conflicts with other libraries. Note also that you should continue using the

odb namespace when qualifying individual names. For example, you should write

odb::database, not odb::core::database.

Once we are in main(), the first thing we do is create the MySQL database object. Notice that

this is the last line in driver.cxx that mentions MySQL explicitly; the rest of the code works

through the common interfaces and is database system-independent. We use the argc/argv

mysql::database constructor which automatically extract the database parameters, such as

login name, password, database name, etc., from the command line. In your own applications you

may prefer to use other mysql::database constructors which allow you to pass this informa­

Revision 2.6, March 202516 C++ Object Persistence with ODB

2.4 Making Objects Persistent

tion directly (Section 17.2, "MySQL Database Class").

Next, we create three person objects. Right now they are transient objects, which means that if

we terminate the application at this point, they will be gone without any evidence of them ever

existing. The next line starts a database transaction. We discuss transactions in detail later in this

manual. For now, all we need to know is that all ODB database operations must be performed

within a transaction and that a transaction is an atomic unit of work; all database operations

performed within a transaction either succeed (committed) together or are automatically undone

(rolled back).

Once we are in a transaction, we call the persist() database function on each of our person
objects. At this point the state of each object is saved in the database. However, note that this

state is not permanent until and unless the transaction is committed. If, for example, our applica­

tion crashes at this point, there will still be no evidence of our objects ever existing.

In our case, one more thing happens when we call persist(). Remember that we decided to

use database-assigned identifiers for our person objects. The call to persist() is where this

assignment happens. Once this function returns, the id_ member contains this object’s unique

identifier. As a convenience, the persist() function also returns a copy of the object’s identi­

fier that it made persistent. We save the returned identifier for each object in a local variable. We

will use these identifiers later in the chapter to perform other database operations on our persis­

tent objects.

After we have persisted our objects, it is time to commit the transaction and make the changes

permanent. Only after the commit() function returns successfully, are we guaranteed that the

objects are made persistent. Continuing with the crash example, if our application terminates after

the commit for whatever reason, the objects’ state in the database will remain intact. In fact, as

we will discover shortly, our application can be restarted and load the original objects from the

database. Note also that a transaction must be committed explicitly with the commit() call. If

the transaction object leaves scope without the transaction being explicitly committed or

rolled back, it will automatically be rolled back. This behavior allows you not to worry about

exceptions being thrown within a transaction; if they cross the transaction boundary, the transac­

tion will automatically be rolled back and all the changes made to the database undone.

The final bit of code in our example is the catch block that handles the database exceptions. We

do this by catching the base ODB exception (Section 3.14, "ODB Exceptions") and printing the

diagnostics.

Let’s now compile (Section 2.3, "Compiling and Running") and then run our first ODB applica­

tion:

17Revision 2.6, March 2025 C++ Object Persistence with ODB

2.4 Making Objects Persistent

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Our first application doesn’t print anything except for error messages so we can’t really tell

whether it actually stored the objects’ state in the database. While we will make our application

more entertaining shortly, for now we can use the mysql client to examine the database content.

It will also give us a feel for how the objects are stored:

mysql --user=odb_test --database=odb_test

Welcome to the MySQL monitor.

mysql> select * from person;

+----+-------+------+-----+
| id | first | last | age |
+----+-------+------+-----+
1	John	Doe	33
2	Jane	Doe	32
3	Joe	Dirt	30
+----+-------+------+-----+
3 rows in set (0.00 sec)

mysql> quit

Another way to get more insight into what’s going on under the hood, is to trace the SQL state­

ments executed by ODB as a result of each database operation. Here is how we can enable tracing

just for the duration of our transaction:

 // Create a few persistent person objects.
 //
 {
 ...

 transaction t (db->begin ());

 t.tracer (stderr_tracer);

 // Make objects persistent and save their ids for later use.
 //
 john_id = db->persist (john);
 jane_id = db->persist (jane);
 joe_id = db->persist (joe);

 t.commit ();
 }

Revision 2.6, March 202518 C++ Object Persistence with ODB

2.4 Making Objects Persistent

With this modification our application now produces the following output:

INSERT INTO ‘person‘ (‘id‘,‘first‘,‘last‘,‘age‘) VALUES (?,?,?,?)
INSERT INTO ‘person‘ (‘id‘,‘first‘,‘last‘,‘age‘) VALUES (?,?,?,?)
INSERT INTO ‘person‘ (‘id‘,‘first‘,‘last‘,‘age‘) VALUES (?,?,?,?)

Note that we see question marks instead of the actual values because ODB uses prepared state­

ments and sends the data to the database in binary form. For more information on tracing, refer to

Section 3.13, "Tracing SQL Statement Execution". In the next section we will see how to access

persistent objects from our application.

2.5 Querying the Database for Objects

So far our application doesn’t resemble a typical "Hello World" example. It doesn’t print

anything except for error messages. Let’s change that and teach our application to say hello to

people from our database. To make it a bit more interesting, let’s say hello only to people over

30:

// driver.cxx
//

...

int
main (int argc, char* argv[])
{
 try
 {
 ...

 // Create a few persistent person objects.
 //
 {
 ...
 }

 using query = odb::query<person>;
 using result = odb::result<person>;

 // Say hello to those over 30.
 //
 {
 transaction t (db->begin ());

 result r (db->query<person> (query::age > 30));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 cout << "Hello, " << i->first () << "!" << endl;

19Revision 2.6, March 2025 C++ Object Persistence with ODB

2.5 Querying the Database for Objects

 }

 t.commit ();
 }
 }
 catch (const odb::exception& e)
 {
 cerr << e.what () << endl;
 return 1;
 }
}

The first half of our application is the same as before and is replaced with "..." in the above listing

for brevity. Again, let’s examine the rest of it piece by piece.

The two using declarations create convenient aliases for two template instantiations that will be

used a lot in our application. The first is the query type for the person objects and the second is

the result type for that query.

Then we begin a new transaction and call the query() database function. We pass a query

expression (query::age > 30) which limits the returned objects only to those with the age

greater than 30. We also save the result of the query in a local variable.

The next few lines perform a standard for-loop iteration over the result sequence printing hello

for every returned person. Then we commit the transaction and that’s it. Let’s see what this appli­

cation will print:

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!

That looks about right, but how do we know that the query actually used the database instead of

just using some in-memory artifacts of the earlier persist() calls? One way to test this would

be to comment out the first transaction in our application and re-run it without re-creating the

database schema. This way the objects that were persisted during the previous run will be

returned. Alternatively, we can just re-run the same application without re-creating the schema

and notice that we now show duplicate objects:

./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, John!
Hello, Jane!

Revision 2.6, March 202520 C++ Object Persistence with ODB

2.5 Querying the Database for Objects

What happens here is that the previous run of our application persisted a set of person objects

and when we re-run the application, we persist another set with the same names but with different

ids. When we later run the query, matches from both sets are returned. We can change the line

where we print the "Hello" string as follows to illustrate this point:

cout << "Hello, " << i->first () << " (" << i->id () << ")!" << endl;

If we now re-run this modified program, again without re-creating the database schema, we will

get the following output:

./driver --user odb_test --database odb_test

Hello, John (1)!
Hello, Jane (2)!
Hello, John (4)!
Hello, Jane (5)!
Hello, John (7)!
Hello, Jane (8)!

The identifiers 3, 6, and 9 that are missing from the above list belong to the "Joe Dirt" objects

which are not selected by this query.

2.6 Updating Persistent Objects

While making objects persistent and then selecting some of them using queries are two useful

operations, most applications will also need to change the object’s state and then make these

changes persistent. Let’s illustrate this by updating Joe’s age who just had a birthday:

// driver.cxx
//

...

int
main (int argc, char* argv[])
{
 try
 {
 ...

 unsigned long long john_id, jane_id, joe_id;

 // Create a few persistent person objects.
 //
 {
 ...

 // Save object ids for later use.

21Revision 2.6, March 2025 C++ Object Persistence with ODB

2.6 Updating Persistent Objects

 //
 john_id = john.id ();
 jane_id = jane.id ();
 joe_id = joe.id ();
 }

 // Joe Dirt just had a birthday, so update his age.
 //
 {
 transaction t (db->begin ());

 unique_ptr<person> joe (db->load<person> (joe_id));
 joe->age (joe->age () + 1);
 db->update (*joe);

 t.commit ();
 }

 // Say hello to those over 30.
 //
 {
 ...
 }
 }
 catch (const odb::exception& e)
 {
 cerr << e.what () << endl;
 return 1;
 }
}

The beginning and the end of the new transaction are the same as the previous two. Once within a

transaction, we call the load() database function to instantiate a person object with Joe’s

persistent state. We pass Joe’s object identifier that we stored earlier when we made this object

persistent. While here we use std::unique_ptr to manage the returned object, we could

have also used another smart pointer, for example shared_ptr from C++11 or Boost. For

more information on the object lifetime management and the smart pointers that we can use for

that, see Section 3.3, "Object and View Pointers".

With the instantiated object in hand we increment the age and call the update() function to

update the object’s state in the database. Once the transaction is committed, the changes are made

permanent.

If we now run this application, we will see Joe in the output since he is now over 30:

Revision 2.6, March 202522 C++ Object Persistence with ODB

2.6 Updating Persistent Objects

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, Joe!

What if we didn’t have an identifier for Joe? Maybe this object was made persistent in another

run of our application or by another application altogether. Provided that we only have one Joe

Dirt in the database, we can use the query facility to come up with an alternative implementation

of the above transaction:

 // Joe Dirt just had a birthday, so update his age. An
 // alternative implementation without using the object id.
 //
 {
 transaction t (db->begin ());

 // Here we know that there can be only one Joe Dirt in our
 // database so we use the query_one() shortcut instead of
 // manually iterating over the result returned by query().
 //
 unique_ptr<person> joe (
 db->query_one<person> (query::first == "Joe" &&
 query::last == "Dirt"));

 if (joe.get () != 0)
 {
 joe->age (joe->age () + 1);
 db->update (*joe);
 }

 t.commit ();
 }

2.7 Defining and Using Views

Suppose that we need to gather some basic statistics about the people stored in our database.

Things like the total head count, as well as the minimum and maximum ages. One way to do it

would be to query the database for all the person objects and then calculate this information as

we iterate over the query result. While this approach may work fine for our database with just

three people in it, it would be very inefficient if we had a large number of objects.

While it may not be conceptually pure from the object-oriented programming point of view, a

relational database can perform some computations much faster and much more economically

than if we performed the same operations ourselves in the application’s process.

23Revision 2.6, March 2025 C++ Object Persistence with ODB

2.7 Defining and Using Views

To support such cases ODB provides the notion of views. An ODB view is a C++ class that

embodies a light-weight, read-only projection of one or more persistent objects or database tables

or the result of a native SQL query execution or stored procedure call.

Some of the common applications of views include loading a subset of data members from

objects or columns database tables, executing and handling results of arbitrary SQL queries,

including aggregate queries, as well as joining multiple objects and/or database tables using

object relationships or custom join conditions.

While you can find a much more detailed description of views in Chapter 10, "Views", here is

how we can define the person_stat view that returns the basic statistics about the person

objects:

#pragma db view object(person)
struct person_stat
{
 #pragma db column("count(" + person::id_ + ")")
 std::size_t count;

 #pragma db column("min(" + person::age_ + ")")
 unsigned short min_age;

 #pragma db column("max(" + person::age_ + ")")
 unsigned short max_age;
};

Normally, to get the result of a view we use the same query() function as when querying the

database for an object. Here, however, we are executing an aggregate query which always returns

exactly one element. Therefore, instead of getting the result instance and then iterating over it, we

can use the shortcut query_value() function. Here is how we can load and print our statistics

using the view we have just created:

 // Print some statistics about all the people in our database.
 //
 {
 transaction t (db->begin ());

 // The result of this query always has exactly one element.
 //
 person_stat ps (db->query_value<person_stat> ());

 cout << "count : " << ps.count << endl
 << "min age: " << ps.min_age << endl
 << "max age: " << ps.max_age << endl;

 t.commit ();
 }

Revision 2.6, March 202524 C++ Object Persistence with ODB

2.7 Defining and Using Views

If we now add the person_stat view to the person.hxx header, the above transaction to

driver.cxx, as well as re-compile and re-run our example, then we will see the following

additional lines in the output:

count : 3
min age: 31
max age: 33

2.8 Deleting Persistent Objects

The last operation that we will discuss in this chapter is deleting the persistent object from the

database. The following code fragment shows how we can delete an object given its identifier:

 // John Doe is no longer in our database.
 //
 {
 transaction t (db->begin ());
 db->erase<person> (john_id);
 t.commit ();
 }

To delete John from the database we start a transaction, call the erase() database function with

John’s object id, and commit the transaction. After the transaction is committed, the erased object

is no longer persistent.

If we don’t have an object id handy, we can use queries to find and delete the object:

 // John Doe is no longer in our database. An alternative
 // implementation without using the object id.
 //
 {
 transaction t (db->begin ());

 // Here we know that there can be only one John Doe in our
 // database so we use the query_one() shortcut again.
 //
 unique_ptr<person> john (
 db->query_one<person> (query::first == "John" &&
 query::last == "Doe"));

 if (john.get () != 0)
 db->erase (*john);

 t.commit ();
 }

25Revision 2.6, March 2025 C++ Object Persistence with ODB

2.8 Deleting Persistent Objects

2.9 Changing Persistent Classes

When the definition of a transient C++ class is changed, for example by adding or deleting a data

member, we don’t have to worry about any existing instances of this class not matching the new

definition. After all, to make the class changes effective we have to restart the application and

none of the transient instances will survive this.

Things are not as simple for persistent classes. Because they are stored in the database and there­

fore survive application restarts, we have a new problem: what happens to the state of existing

objects (which correspond to the old definition) once we change our persistent class?

The problem of working with old objects, called database schema evolution, is a complex issue

and ODB provides comprehensive support for handling it. While this support is covered in detail

in Chapter 13, "Database Schema Evolution", let us consider a simple example that should give

us a sense of the functionality provided by ODB in this area.

Suppose that after using our person persistent class for some time and creating a number of

databases containing its instances, we realized that for some people we also need to store their

middle name. If we go ahead and just add the new data member, everything will work fine with

new databases. Existing databases, however, have a table that does not correspond to the new

class definition. Specifically, the generated database support code now expects there to be a

column to store the middle name. But such a column was never created in the old databases.

ODB can automatically generate SQL statements that will migrate old databases to match the

new class definitions. But first, we need to enable schema evolution support by defining a version

for our object model:

// person.hxx
//

#pragma db model version(1, 1)

class person
{
 ...

 std::string first_;
 std::string last_;
 unsigned short age_;
};

The first number in the version pragma is the base model version. This is the lowest version

we will be able to migrate from. The second number is the current model version. Since we

haven’t made any changes yet to our persistent class, both of these values are 1.

Revision 2.6, March 202526 C++ Object Persistence with ODB

2.9 Changing Persistent Classes

Next we need to re-compile our person.hxx header file with the ODB compiler, just as we did

before:

odb -d mysql --generate-query --generate-schema person.hxx

If we now look at the list of files produced by the ODB compiler, we will notice a new file:

person.xml. This is a changelog file where the ODB compiler keeps track of the database

changes corresponding to our class changes. Note that this file is automatically maintained by the

ODB compiler and all we have to do is keep it around between re-compilations.

Now we are ready to add the middle name to our person class. We also give it a default value

(empty string) which is what will be assigned to existing objects in old databases. Notice that we

have also incremented the current version:

// person.hxx
//

#pragma db model version(1, 2)

class person
{
 ...

 std::string first_;

 #pragma db default("")
 std::string middle_;

 std::string last_;
 unsigned short age_;
};

If we now recompile the person.hxx header again, we will see two extra generated files:

person-002-pre.sql and person-002-post.sql. These two files contain schema

migration statements from version 1 to version 2. Similar to schema creation, schema migration

statements can also be embedded into the generated C++ code.

person-002-pre.sql and person-002-post.sql are the pre and post schema migra­

tion files. To migrate one of our old databases, we first execute the pre migration file:

mysql --user=odb_test --database=odb_test < person-002-pre.sql

Between the pre and post schema migrations we can run data migration code, if required. At this

stage, we can both access the old and store the new data. In our case we don’t need any data

migration code since we assigned the default value to the middle name for all the existing objects.

27Revision 2.6, March 2025 C++ Object Persistence with ODB

2.9 Changing Persistent Classes

To finish the migration process we execute the post migration statements:

mysql --user=odb_test --database=odb_test < person-002-post.sql

2.10 Working with Multiple Databases

Accessing multiple databases (that is, data stores) is simply a matter of creating multiple

odb::<db>::database instances representing each database. For example:

odb::mysql::database db1 ("john", "secret", "test_db1");
odb::mysql::database db2 ("john", "secret", "test_db2");

Some database systems also allow attaching multiple databases to the same instance. A more

interesting question is how we access multiple database systems (that is, database implementa­

tions) from the same application. For example, our application may need to store some objects in

a remote MySQL database and others in a local SQLite file. Or, our application may need to be

able to store its objects in a database system that is selected by the user at runtime.

ODB provides comprehensive multi-database support that ranges from tight integration with

specific database systems to being able to write database-agnostic code and loading individual

database systems support dynamically. While all these aspects are covered in detail in Chapter

16, "Multi-Database Support", in this section we will get a taste of this functionality by extending

our "Hello World" example to be able to store its data either in MySQL or PostgreSQL (other

database systems supported by ODB can be added in a similar manner).

The first step in adding multi-database support is to re-compile our person.hxx header to

generate database support code for additional database systems:

odb --multi-database dynamic -d common -d mysql -d pgsql \
--generate-query --generate-schema person.hxx

The --multi-database ODB compiler option turns on multi-database support. For now it is

not important what the dynamic value that we passed to this option means, but if you are

curious, see Chapter 16. The result of this command are three sets of generated files:

person-odb.?xx (common interface; corresponds to the common database),

person-odb-mysql.?xx (MySQL support code), and person-odb-pgsql.?xx (Post­

greSQL support code). There are also two schema files: person-mysql.sql and

person-pgsql.sql.

The only part that we need to change in driver.cxx is how we create the database instance.

Specifically, this line:

Revision 2.6, March 202528 C++ Object Persistence with ODB

2.10 Working with Multiple Databases

unique_ptr<database> db (new odb::mysql::database (argc, argv));

Now our example is capable of storing its data either in MySQL or PostgreSQL so we need to

somehow allow the caller to specify which database we must use. To keep things simple, we will

make the first command line argument specify the database system we must use while the rest

will contain the database-specific options which we will pass to the odb::<db>::database

constructor as before. Let’s put all this logic into a separate function which we will call

create_database(). Here is what the beginning of our modified driver.cxx will look

like (the remainder is unchanged):

// driver.cxx
//

#include <string>
#include <memory> // std::unique_ptr
#include <iostream>

#include <odb/database.hxx>
#include <odb/transaction.hxx>

#include <odb/mysql/database.hxx>
#include <odb/pgsql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

unique_ptr<database>
create_database (int argc, char* argv[])
{
 unique_ptr<database> r;

 if (argc < 2)
 {
 cerr << "error: database system name expected" << endl;
 return r;
 }

 string db (argv[1]);

 if (db == "mysql")
 r.reset (new odb::mysql::database (argc, argv));
 else if (db == "pgsql")
 r.reset (new odb::pgsql::database (argc, argv));
 else
 cerr << "error: unknown database system " << db << endl;

 return r;

29Revision 2.6, March 2025 C++ Object Persistence with ODB

2.10 Working with Multiple Databases

}

int
main (int argc, char* argv[])
{
 try
 {
 unique_ptr<database> db (create_database (argc, argv));

 if (db.get () == 0)
 return 1; // Diagnostics has already been issued.

 ...

And that’s it. The only thing left is to build and run our example:

c++ -c driver.cxx
c++ -c person-odb.cxx
c++ -c person-odb-mysql.cxx
c++ -c person-odb-pgsql.cxx
c++ -o driver driver.o person-odb.o person-odb-mysql.o \
person-odb-pgsql.o -lodb-mysql -lodb-pgsql -lodb

Here is how we can access a MySQL database:

mysql --user=odb_test --database=odb_test < person-mysql.sql
./driver mysql --user odb_test --database odb_test

Or a PostgreSQL database:

psql --user=odb_test --dbname=odb_test -f person-pgsql.sql
./driver pgsql --user odb_test --database odb_test

2.11 Summary

This chapter presented a very simple application which, nevertheless, exercised all of the core

database functions: persist(), query(), load(), update(), and erase(). We also

saw that writing an application that uses ODB involves the following steps:

1. Declare persistent classes in header files.

2. Compile these headers to generate database support code.

3. Link the application with the generated code and two ODB runtime libraries.

Do not be concerned if, at this point, much appears unclear. The intent of this chapter is to give

you only a general idea of how to persist C++ objects with ODB. We will cover all the details

throughout the remainder of this manual.

Revision 2.6, March 202530 C++ Object Persistence with ODB

2.11 Summary

3 Working with Persistent Objects

The previous chapters gave us a high-level overview of ODB and showed how to use it to store

C++ objects in a database. In this chapter we will examine the ODB object persistence model as

well as the core database APIs in greater detail. We will start with basic concepts and terminol­

ogy in Section 3.1 and Section 3.3 and continue with the discussion of the odb::database
class in Section 3.4, transactions in Section 3.5, and connections in Section 3.6. The remainder of

this chapter deals with the core database operations and concludes with the discussion of ODB

exceptions.

In this chapter we will continue to use and expand the person persistent class that we have

developed in the previous chapter.

3.1 Concepts and Terminology

The term database can refer to three distinct things: a general notion of a place where an applica­

tion stores its data, a software implementation for managing this data (for example MySQL), and,

finally, some database software implementations may manage several data stores which are

usually distinguished by name. This name is also commonly referred to as a database.

In this manual, when we use the word database, we refer to the first meaning above, for example,

"The update() function saves the object’s state to the database." The term Database Manage­

ment System (DBMS) is often used to refer to the second meaning of the word database. In this

manual we will use the term database system for short, for example, "Database system-indepen­

dent application code." Finally, to distinguish the third meaning from the other two, we will use

the term database name, for example, "The second option specifies the database name that the

application should use to store its data."

In C++ there is only one notion of a type and an instance of a type. For example, a fundamental

type, such as int, is, for the most part, treated the same as a user defined class type. However,

when it comes to persistence, we have to place certain restrictions and requirements on certain

C++ types that can be stored in the database. As a result, we divide persistent C++ types into two

groups: object types and value types. An instance of an object type is called an object and an

instance of a value type — a value.

An object is an independent entity. It can be stored, updated, and deleted in the database indepen­

dent of other objects. Normally, an object has an identifier, called object id, that is unique among

all instances of an object type within a database. In contrast, a value can only be stored in the

database as part of an object and doesn’t have its own unique identifier.

An object consists of data members which are either values (Chapter 7, "Value Types"), pointers

to other objects (Chapter 6, "Relationships"), or containers of values or pointers to other objects

(Chapter 5, "Containers"). Pointers to other objects and containers can be viewed as special kinds

31Revision 2.6, March 2025 C++ Object Persistence with ODB

3 Working with Persistent Objects

of values since they also can only be stored in the database as part of an object. Static data

members are not stored in the database.

An object type is a C++ class. Because of this one-to-one relationship, we will use terms object

type and object class interchangeably. In contrast, a value type can be a fundamental C++ type,

such as int or a class type, such as std::string. If a value consists of other values, then it is

called a composite value and its type — a composite value type (Section 7.2, "Composite Value

Types"). Otherwise, the value is called simple value and its type — a simple value type (Section

7.1, "Simple Value Types"). Note that the distinction between simple and composite values is

conceptual rather than representational. For example, std::string is a simple value type

because conceptually string is a single value even though the representation of the string class

may contain several data members each of which could be considered a value. In fact, the same

value type can be viewed (and mapped) as both simple and composite by different applications.

While not strictly necessary in a purely object-oriented application, practical considerations often

require us to only load a subset of an object’s data members or a combination of members from

several objects. We may also need to factor out some computations to the relational database

instead of performing them in the application’s process. To support such requirements ODB

distinguishes a third kind of C++ types, called views (Chapter 10, "Views"). An ODB view is a

C++ class that embodies a light-weight, read-only projection of one or more persistent objects

or database tables or the result of a native SQL query execution.

Understanding how all these concepts map to the relational model will hopefully make these

distinctions clearer. In a relational database an object type is mapped to a table and a value type is

mapped to one or more columns. A simple value type is mapped to a single column while a

composite value type is mapped to several columns. An object is stored as a row in this table and

a value is stored as one or more cells in this row. A simple value is stored in a single cell while a

composite value occupies several cells. A view is not a persistent entity and it is not stored in the

database. Rather, it is a data structure that is used to capture a single row of an SQL query result.

Going back to the distinction between simple and composite values, consider a date type which

has three integer members: year, month, and day. In one application it can be considered a

composite value and each member will get its own column in a relational database. In another

application it can be considered a simple value and stored in a single column as a number of days

from some predefined date.

Until now, we have been using the term persistent class to refer to object classes. We will

continue to do so even though a value type can also be a class. The reason for this asymmetry is

the subordinate nature of value types when it comes to database operations. Remember that

values are never stored directly but rather as part of an object that contains them. As a result,

when we say that we want to make a C++ class persistent or persist an instance of a class in the

database, we invariably refer to an object class rather than a value class.

Revision 2.6, March 202532 C++ Object Persistence with ODB

3.1 Concepts and Terminology

Normally, you would use object types to model real-world entities, things that have their own

identity. For example, in the previous chapter we created a person class to model a person,

which is a real-world entity. Name and age, which we used as data members in our person class

are clearly values. It is hard to think of age 31 or name "Joe" as having their own identities.

A good test to determine whether something is an object or a value, is to consider if other objects

might reference it. A person is clearly an object because it can be referred to by other objects such

as a spouse, an employer, or a bank. On the other hand, a person’s age or name is not something

that other objects would normally refer to.

Also, when an object represents a real entity, it is easy to choose a suitable object id. For

example, for a person there is an established notion of an identifier (SSN, student id, passport

number, etc). Another alternative is to use a person’s email address as an identifier.

Note, however, that these are only guidelines. There could be good reasons to make something

that would normally be a value an object. Consider, for example, a database that stores a vast

number of people. Many of the person objects in this database have the same names and

surnames and the overhead of storing them in every object may negatively affect the perfor­

mance. In this case, we could make the first name and last name each an object and only store

pointers to these objects in the person class.

An instance of a persistent class can be in one of two states: transient and persistent. A transient

instance only has a representation in the application’s memory and will cease to exist when the

application terminates, unless it is explicitly made persistent. In other words, a transient instance

of a persistent class behaves just like an instance of any ordinary C++ class. A persistent instance

has a representation in both the application’s memory and the database. A persistent instance will

remain even after the application terminates unless and until it is explicitly deleted from the

database.

3.2 Declaring Persistent Objects and Values

To make a C++ class a persistent object class we declare it as such using the db object
pragma, for example:

#pragma db object
class person
{
 ...
};

The other pragma that we often use is db id which designates one of the data members as an

object id, for example:

33Revision 2.6, March 2025 C++ Object Persistence with ODB

3.2 Declaring Persistent Objects and Values

#pragma db object
class person
{
 ...

 #pragma db id
 unsigned long long id_;
};

The object id can be of a simple or composite (Section 7.2.1, "Composite Object Ids") value type.

This type should be default-constructible, copy-constructible, and copy-assignable. It is also

possible to declare a persistent class without an object id, however, such a class will have limited

functionality (Section 14.1.6, "no_id").

The above two pragmas are the minimum required to declare a persistent class with an object id.

Other pragmas can be used to fine-tune the database-related properties of a class and its members

(Chapter 14, "ODB Pragma Language").

Normally, a persistent class should define the default constructor. The generated database support

code uses this constructor when instantiating an object from the persistent state. If we add the

default constructor only for the database support code, then we can make it private provided we

also make the odb::access class, defined in the <odb/core.hxx> header, a friend of this

object class. For example:

#include <odb/core.hxx>

#pragma db object
class person
{
 ...

private:
 friend class odb::access;
 person () {}
};

It is also possible to have an object class without the default constructor. However, in this case,

the database operations will only be able to load the persistent state into an existing instance

(Section 3.9, "Loading Persistent Objects", Section 4.4, "Query Result").

The ODB compiler also needs access to the non-transient (Section 14.4.11, "transient") data

members of a persistent class. The ODB compiler can access such data members directly if they

are public. It can also do so if they are private or protected and the odb::access class is

declared a friend of the object type. For example:

Revision 2.6, March 202534 C++ Object Persistence with ODB

3.2 Declaring Persistent Objects and Values

#include <odb/core.hxx>

#pragma db object
class person
{
 ...

private:
 friend class odb::access;
 person () {}

 #pragma db id
 unsigned long long id_;

 std::string name_;
};

If data members are not accessible directly, then the ODB compiler will try to automatically find

suitable accessor and modifier functions. To accomplish this, the ODB compiler will try to

lookup common accessor and modifier names derived from the data member name. Specifically,

for the name_ data member in the above example, the ODB compiler will look for accessor func­

tions with names: get_name(), getName(), getname(), and just name() as well as for

modifier functions with names: set_name(), setName(), setname(), and just name().

You can also add support for custom name derivations with the --accessor-regex and

--modifier-regex ODB compiler options. Refer to the ODB Compiler Command Line

Manual for details on these options. The following example illustrates automatic accessor and

modifier discovery:

#pragma db object
class person
{
public:
 person () {}

 ...

 unsigned long long id () const;
 void id (unsigned long long);

 const std::string& get_name () const;
 std::string& set_name ();

private:
 #pragma db id
 unsigned long long id_; // Uses id() for access.

 std::string name_; // Uses get_name()/set_name() for access.
};

35Revision 2.6, March 2025 C++ Object Persistence with ODB

3.2 Declaring Persistent Objects and Values

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/products/odb/doc/odb.xhtml

Finally, if a data member is not directly accessible and the ODB compiler was unable to discover

suitable accessor and modifier functions, then we can provide custom accessor and modifier

expressions using the db get and db set pragmas. For more information on custom accessor

and modifier expressions refer to Section 14.4.5, "get/set/access".

Data members of a persistent class can also be split into separately-loaded and/or sepa­

rately-updated sections. For more information on this functionality, refer to Chapter 9,

"Sections".

You may be wondering whether we also have to declare value types as persistent. We don’t need

to do anything special for simple value types such as int or std::string since the ODB

compiler knows how to map them to suitable database types and how to convert between the two.

On the other hand, if a simple value is unknown to the ODB compiler then we will need to

provide the mapping to the database type and, possibly, the code to convert between the two. For

more information on how to achieve this refer to the db type pragma description in Section

14.3.1, "type".

Similar to object classes, composite value types have to be explicitly declared as persistent using

the db value pragma, for example:

#pragma db value
class name
{
 ...

 std::string first_;
 std::string last_;
};

Note that a composite value cannot have a data member designated as an object id since, as we

have discussed earlier, values do not have a notion of identity. A composite value type also

doesn’t have to define the default constructor, unless it is used as an element of a container. The

ODB compiler uses the same mechanisms to access data members in composite value types as in

object types. Composite value types are discussed in more detail in Section 7.2, "Composite

Value Types".

3.3 Object and View Pointers

As we have seen in the previous chapter, some database operations create dynamically allocated

instances of persistent classes and return pointers to these instances. As we will see in later chap­

ters, pointers are also used to establish relationships between objects (Chapter 6, "Relationships")

as well as to cache persistent objects in a session (Chapter 11, "Session"). While in most cases

you won’t need to deal with pointers to views, it is possible to a obtain a dynamically allocated

instance of a view using the result_iterator::load() function (Section 4.4, "Query

Results").

Revision 2.6, March 202536 C++ Object Persistence with ODB

3.3 Object and View Pointers

By default, all these mechanisms use raw pointers to return objects and views as well as to pass

and cache objects. This is normally sufficient for applications that have simple object lifetime

requirements and do not use sessions or object relationships. In particular, a dynamically allo­

cated object or view that is returned as a raw pointer from a database operation can be assigned to

a smart pointer of our choice, for example std::auto_ptr (C++98/03 only),

std::unique_ptr from C++11, or shared_ptr from C++11 or Boost.

However, to avoid any possibility of a mistake, such as forgetting to use a smart pointer for a

returned object or view, as well as to simplify the use of more advanced ODB functionality, such

as sessions and bidirectional object relationships, it is recommended that you use smart pointers

with the sharing semantics as object pointers. The shared_ptr smart pointer from C++11 or

Boost is a good default choice. However, if sharing is not required and sessions are not used, then

std::unique_ptr or std::auto_ptr can be used just as well.

ODB provides several mechanisms for changing the object or view pointer type. To specify the

pointer type on the per object or per view basis we can use the db pointer pragma, for

example:

#pragma db object pointer(std::shared_ptr)
class person
{
 ...
};

We can also specify the default pointer for a group of objects or views at the namespace level:

#pragma db namespace pointer(std::shared_ptr)
namespace accounting
{
 #pragma db object
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

Finally, we can use the --default-pointer option to specify the default pointer for the

whole file. Refer to the ODB Compiler Command Line Manual for details on this option’s argu­

ment. The typical usage is shown below:

37Revision 2.6, March 2025 C++ Object Persistence with ODB

3.3 Object and View Pointers

http://www.codesynthesis.com/products/odb/doc/odb.xhtml

--default-pointer std::shared_ptr

An alternative to this method with the same effect is to specify the default pointer for the global

namespace:

#pragma db namespace() pointer(std::shared_ptr)

Note that we can always override the default pointer specified at the namespace level or with the

command line option using the db pointer object or view pragma. For example:

#pragma db object pointer(std::shared_ptr)
namespace accounting
{
 #pragma db object
 class employee
 {
 ...
 };

 #pragma db object pointer(std::unique_ptr)
 class employer
 {
 ...
 };
}

Refer to Section 14.1.2, "pointer (object)", Section 14.2.4, "pointer (view)", and Section

14.5.1, "pointer (namespace)" for more information on these mechanisms.

Built-in support that is provided by the ODB runtime library allows us to use

std::shared_ptr (C++11), std::unique_ptr (C++11), or std::auto_ptr
(C++98/03 only) as pointer types. Plus, ODB profile libraries, that are available for commonly

used frameworks and libraries (such as Boost and Qt), provide support for smart pointers found in

these frameworks and libraries (Part III, "Profiles"). It is also easy to add support for our own

smart pointers, as described in Section 6.5, "Using Custom Smart Pointers".

3.4 Database

Before an application can make use of persistence services offered by ODB, it has to create a

database class instance. A database instance is the representation of the place where the applica­

tion stores its persistent objects. We create a database instance by instantiating one of the

database system-specific classes. For example, odb::mysql::database would be such a

class for the MySQL database system. We will also normally pass a database name as an argu­

ment to the class’ constructor. The following code fragment shows how we can create a database

instance for the MySQL database system:

Revision 2.6, March 202538 C++ Object Persistence with ODB

3.4 Database

#include <odb/database.hxx>
#include <odb/mysql/database.hxx>

unique_ptr<odb::database> db (
 new odb::mysql::database (
 "test_user" // database login name
 "test_password" // database password
 "test_database" // database name
));

The odb::database class is a common interface for all the database system-specific classes

provided by ODB. You would normally work with the database instance via this interface unless

there is a specific functionality that your application depends on and which is only exposed by a

particular system’s database class. You will need to include the <odb/database.hxx>
header file to make this class available in your application.

The odb::database interface defines functions for starting transactions and manipulating

persistent objects. These are discussed in detail in the remainder of this chapter as well as the next

chapter which is dedicated to the topic of querying the database for persistent objects. For details

on the system-specific database classes, refer to Part II, "Database Systems".

Before we can persist our objects, the corresponding database schema has to be created in the

database. The schema contains table definitions and other relational database artifacts that are

used to store the state of persistent objects in the database.

There are several ways to create the database schema. The easiest is to instruct the ODB compiler

to generate the corresponding schema from the persistent classes (--generate-schema
option). The ODB compiler can generate the schema as a standalone SQL file, embedded into the

generated C++ code, or as a separate C++ source file (--schema-format option). If we are

using the SQL file to create the database schema, then this file should be executed, normally only

once, before the application is started.

Alternatively, if the schema is embedded directly into the generated code or produced as a sepa­

rate C++ source file, then we can use the odb::schema_catalog class to create it in the

database from within our application, for example:

#include <odb/schema-catalog.hxx>

odb::transaction t (db->begin ());
odb::schema_catalog::create_schema (*db);
t.commit ();

Refer to the next section for information on the odb::transaction class. The complete

version of the above code fragment is available in the schema/embedded example in the

odb-examples package.

39Revision 2.6, March 2025 C++ Object Persistence with ODB

3.4 Database

The odb::schema_catalog class has the following interface. You will need to include the

<odb/schema-catalog.hxx> header file to make this class available in your application.

namespace odb
{
 class schema_catalog
 {
 public:
 static void
 create_schema (database&,
 const std::string& name = "",
 bool drop = true);

 static void
 drop_schema (database&, const std::string& name = "");

 static bool
 exists (database_id, const std::string& name = "");

 static bool
 exists (const database&, const std::string& name = "")
 };
}

The first argument to the create_schema() function is the database instance that we would

like to create the schema in. The second argument is the schema name. By default, the ODB

compiler generates all embedded schemas with the default schema name (empty string).

However, if your application needs to have several separate schemas, you can use the

--schema-name ODB compiler option to assign custom schema names and then use these

names as a second argument to create_schema(). By default, create_schema() will

also delete all the database objects (tables, indexes, etc.) if they exist prior to creating the new

ones. You can change this behavior by passing false as the third argument. The

drop_schema() function allows you to delete all the database objects without creating the

new ones.

If the schema is not found, the create_schema() and drop_schema() functions throw the

odb::unknown_schema exception. You can use the exists() function to check whether a

schema for the specified database and with the specified name exists in the catalog. Note also that

the create_schema() and drop_schema() functions should be called within a transac­

tion.

ODB also provides support for database schema evolution. Similar to schema creation, schema

migration statements can be generated either as standalone SQL files or embedded into the gener­

ated C++ code. For more information on schema evolution support, refer to Chapter 13,

"Database Schema Evolution".

Revision 2.6, March 202540 C++ Object Persistence with ODB

3.4 Database

Finally, we can also use a custom database schema with ODB. This approach can work similarly

to the standalone SQL file described above except that the database schema is hand-written or

produced by another program. Or we could execute custom SQL statements that create the

schema directly from our application. To map persistent classes to custom database schemas,

ODB provides a wide range of mapping customization pragmas, such as db table,

db column, and db type (Chapter 14, "ODB Pragma Language"). For sample code that

shows how to perform such mapping for various C++ constructs, refer to the schema/custom
example in the odb-examples package.

3.5 Transactions

A transaction is an atomic, consistent, isolated and durable (ACID) unit of work. Database opera­

tions can only be performed within a transaction and each thread of execution in an application

can have only one active transaction at a time.

By atomicity we mean that when it comes to making changes to the database state within a trans­

action, either all the changes are applied or none at all. Consider, for example, a transaction that

transfers funds between two objects representing bank accounts. If the debit function on the first

object succeeds but the credit function on the second fails, the transaction is rolled back and the

database state of the first object remains unchanged.

By consistency we mean that a transaction must take all the objects stored in the database from

one consistent state to another. For example, if a bank account object must reference a person

object as its owner and we forget to set this reference before making the object persistent, the

transaction will be rolled back and the database will remain unchanged.

By isolation we mean that the changes made to the database state during a transaction are only

visible inside this transaction until and unless it is committed. Using the above example with the

bank transfer, the results of the debit operation performed on the first object is not visible to other

transactions until the credit operation is successfully completed and the transaction is committed.

By durability we mean that once the transaction is committed, the changes that it made to the

database state are permanent and will survive failures such as an application crash. From now on

the only way to alter this state is to execute and commit another transaction.

A transaction is started by calling either the database::begin() or connec­
tion::begin() function. The returned transaction handle is stored in an instance of the

odb::transaction class. You will need to include the <odb/transaction.hxx>
header file to make this class available in your application. For example:

41Revision 2.6, March 2025 C++ Object Persistence with ODB

3.5 Transactions

#include <odb/transaction.hxx>

transaction t (db.begin ())

// Perform database operations.

t.commit ();

The odb::transaction class has the following interface:

namespace odb
{
 class transaction
 {
 public:
 using database_type = odb::database;
 using connection_type = odb::connection;

 explicit
 transaction (transaction_impl*, bool make_current = true);

 transaction ();

 void
 reset (transaction_impl*, bool make_current = true);

 void
 commit ();

 void
 rollback ();

 database_type&
 database ();

 connection_type&
 connection ();

 bool
 finilized () const;

 public:
 static bool
 has_current ();

 static transaction&
 current ();

 static void
 current (transaction&);

Revision 2.6, March 202542 C++ Object Persistence with ODB

3.5 Transactions

 static bool
 reset_current ();

 // Callback API.
 //
 public:
 ...
 };
}

The commit() function commits a transaction and rollback() rolls it back. Unless the

transaction has been finalized, that is, explicitly committed or rolled back, the destructor of the

transaction class will automatically roll it back when the transaction instance goes out of

scope. If we try to commit or roll back a finalized transaction, the odb::transac­
tion_already_finalized exception is thrown.

The database() accessor returns the database this transaction is working on. Similarly, the

connection() accessor returns the database connection this transaction is on (Section 3.6,

"Connections").

The static current() accessor returns the currently active transaction for this thread. If there is

no active transaction, this function throws the odb::not_in_transaction exception. We

can check whether there is a transaction in effect in this thread using the has_current()
static function.

The make_current argument in the transaction constructor as well as the static

current() modifier and reset_current() function give us additional control over the

nomination of the currently active transaction. If we pass false as the make_current argu­

ment, then the newly created transaction will not automatically be made the active transaction for

this thread. Later, we can use the static current() modifier to set this transaction as the active

transaction. The reset_current() static function clears the currently active transaction.

Together, these mechanisms allow for more advanced use cases, such as multiplexing two or

more transactions on the same thread. For example:

transaction t1 (db1.begin ()); // Active transaction.
transaction t2 (db2.begin (), false); // Not active.

// Perform database operations on db1.

transaction::current (t2); // Deactivate t1, activate t2.

// Perform database operations on db2.

transaction::current (t1); // Switch back to t1.

// Perform some more database operations on db1.

43Revision 2.6, March 2025 C++ Object Persistence with ODB

3.5 Transactions

t1.commit ();

transaction::current (t2); // Switch to t2.

// Perform some more database operations on db2.

t2.commit ();

The reset() modifier allows us to reuse the same transaction instance to complete

several database transactions. Similar to the destructor, reset() will roll the current transaction

back if it hasn’t been finalized. The default transaction constructor creates a finalized trans­

action which can later be initialized using reset(). The finilized() accessor can be used

to check whether the transaction has been finalized. Here is how we can use this functionality to

commit the current transaction and start a new one every time a certain number of database oper­

ations has been performed:

transaction t (db.begin ());

for (size_t i (0); i < n; ++i)
{
 // Perform a database operation, such as persist an object.

 // Commit the current transaction and start a new one after
 // every 100 operations.
 //
 if (i % 100 == 0)
 {
 t.commit ();
 t.reset (db.begin ());
 }
}

t.commit ();

For more information on the transaction callback support, refer to Section 15.1, "Transaction

Callbacks".

Note that in the above discussion of atomicity, consistency, isolation, and durability, all of those

guarantees only apply to the object’s state in the database as opposed to the object’s state in the

application’s memory. It is possible to roll a transaction back but still have changes from this

transaction in the application’s memory. An easy way to avoid this potential inconsistency is to

instantiate persistent objects only within the transaction scope. Consider, for example, these two

implementations of the same transaction:

Revision 2.6, March 202544 C++ Object Persistence with ODB

3.5 Transactions

void
update_age (database& db, person& p)
{
 transaction t (db.begin ());

 p.age (p.age () + 1);
 db.update (p);

 t.commit ();
}

In the above implementation, if the update() call fails and the transaction is rolled back, the

state of the person object in the database and the state of the same object in the application’s

memory will differ. Now consider an alternative implementation which only instantiates the

person object for the duration of the transaction:

void
update_age (database& db, unsigned long long id)
{
 transaction t (db.begin ());

 unique_ptr<person> p (db.load<person> (id));
 p.age (p.age () + 1);
 db.update (p);

 t.commit ();
}

Of course, it may not always be possible to write the application in this style. Oftentimes we need

to access and modify the application’s state of persistent objects out of transactions. In this case it

may make sense to try to roll back the changes made to the application state if the transaction was

rolled back and the database state remains unchanged. One way to do this is to re-load the

object’s state from the database, for example:

void
update_age (database& db, person& p)
{
 try
 {
 transaction t (db.begin ());

 p.age (p.age () + 1);
 db.update (p);

 t.commit ();
 }
 catch (...)
 {
 transaction t (db.begin ());

45Revision 2.6, March 2025 C++ Object Persistence with ODB

3.5 Transactions

 db.load (p.id (), p);
 t.commit ();

 throw;
 }
}

See also Section 15.1, "Transaction Callbacks" for an alternative approach.

3.6 Connections

The odb::connection class represents a connection to the database. Normally, you wouldn’t

work with connections directly but rather let the ODB runtime obtain and release connections as

needed. However, certain use cases may require obtaining a connection manually. For complete­

ness, this section describes the connection class and discusses some of its use cases. You may

want to skip this section if you are reading through the manual for the first time.

Similar to odb::database, the odb::connection class is a common interface for all the

database system-specific classes provided by ODB. For details on the system-specific connec­
tion classes, refer to Part II, "Database Systems".

To make the odb::connection class available in your application you will need to include

the <odb/connection.hxx> header file. The odb::connection class has the following

interface:

namespace odb
{
 class connection
 {
 public:
 using database_type = odb::database;

 transaction
 begin () = 0;

 unsigned long long
 execute (const char* statement);

 unsigned long long
 execute (const std::string& statement);

 unsigned long long
 execute (const char* statement, std::size_t length);

 database_type&
 database ();

Revision 2.6, March 202546 C++ Object Persistence with ODB

3.6 Connections

 };

 using connection_ptr = details::shared_ptr<connection>;
}

The begin() function is used to start a transaction on the connection. The execute() func­

tions allow us to execute native database statements on the connection. Their semantics are equiv­

alent to the database::execute() functions (Section 3.12, "Executing Native SQL State­

ments") except that they can be legally called outside a transaction. Finally, the database()

accessor returns a reference to the odb::database instance to which this connection corre­

sponds.

To obtain a connection we call the database::connection() function. The connection is

returned as odb::connection_ptr, which is an implementation-specific smart pointer with

the shared pointer semantics. This, in particular, means that the connection pointer can be copied

and returned from functions. Once the last instance of connection_ptr pointing to the same

connection is destroyed, the connection is returned to the database instance. The following

code fragment shows how we can obtain, use, and release a connection:

using namespace odb::core;

database& db = ...
connection_ptr c (db.connection ());

// Temporarily disable foreign key constraints.
//
c->execute ("SET FOREIGN_KEY_CHECKS = 0");

// Start a transaction on this connection.
//
transaction t (c->begin ());
...
t.commit ();

// Restore foreign key constraints.
//
c->execute ("SET FOREIGN_KEY_CHECKS = 1");

// When ’c’ goes out of scope, the connection is returned to ’db’.

Some of the use cases which may require direct manipulation of connections include out-of-trans­

action statement execution, such as the execution of connection configuration statements, the

implementation of a connection-per-thread policy, and making sure that a set of transactions is

executed on the same connection.

47Revision 2.6, March 2025 C++ Object Persistence with ODB

3.6 Connections

3.7 Error Handling and Recovery

ODB uses C++ exceptions to report database operation errors. Most ODB exceptions signify hard

errors or errors that cannot be corrected without some intervention from the application. For

example, if we try to load an object with an unknown object id, the

odb::object_not_persistent exception is thrown. Our application may be able to

correct this error, for instance, by obtaining a valid object id and trying again. The hard errors and

corresponding ODB exceptions that can be thrown by each database function are described in the

remainder of this chapter with Section 3.14, "ODB Exceptions" providing a quick reference for

all the ODB exceptions.

The second group of ODB exceptions signify soft or recoverable errors. Such errors are tempo­

rary failures which normally can be corrected by simply re-executing the transaction. ODB

defines three such exceptions: odb::connection_lost, odb::timeout, and

odb::deadlock. All recoverable ODB exceptions are derived from the common

odb::recoverable base exception which can be used to handle all the recoverable condi­

tions with a single catch block.

The odb::connection_lost exception is thrown if a connection to the database is lost in

the middle of a transaction. In this situation the transaction is aborted but it can be re-tried

without any changes. Similarly, the odb::timeout exception is thrown if one of the database

operations or the whole transaction has timed out. Again, in this case the transaction is aborted

but can be re-tried as is.

If two or more transactions access or modify more than one object and are executed concurrently

by different applications or by different threads within the same application, then it is possible

that these transactions will try to access objects in an incompatible order and deadlock. The

canonical example of a deadlock are two transactions in which the first has modified object1
and is waiting for the second transaction to commit its changes to object2 so that it can also

update object2. At the same time the second transaction has modified object2 and is

waiting for the first transaction to commit its changes to object1 because it also needs to

modify object1. As a result, none of the two transactions can be completed.

The database system detects such situations and automatically aborts the waiting operation in one

of the deadlocked transactions. In ODB this translates to the odb::deadlock recoverable

exception being thrown from one of the database functions.

The following code fragment shows how to handle the recoverable exceptions by restarting the

affected transaction:

const unsigned short max_retries = 5;

for (unsigned short retry_count (0); ; retry_count++)
{

Revision 2.6, March 202548 C++ Object Persistence with ODB

3.7 Error Handling and Recovery

 try
 {
 transaction t (db.begin ());

 ...

 t.commit ();
 break;
 }
 catch (const odb::recoverable& e)
 {
 if (retry_count > max_retries)
 throw retry_limit_exceeded (e.what ());
 else
 continue;
 }
}

3.8 Making Objects Persistent

A newly created instance of a persistent class is transient. We use the

database::persist() function template to make a transient instance persistent. This func­

tion has four overloaded versions with the following signatures:

 template <typename T>
 typename object_traits<T>::id_type
 persist (const T& object);

 template <typename T>
 typename object_traits<T>::id_type
 persist (const object_traits<T>::const_pointer_type& object);

 template <typename T>
 typename object_traits<T>::id_type
 persist (T& object);

 template <typename T>
 typename object_traits<T>::id_type
 persist (const object_traits<T>::pointer_type& object);

Here and in the rest of the manual, object_traits<T>::pointer_type and

object_traits<T>::const_pointer_type denote the unrestricted and constant object

pointer types (Section 3.3, "Object and View Pointers"), respectively. Similarly,

object_traits<T>::id_type denotes the object id type. The odb::object_traits
template is part of the database support code generated by the ODB compiler.

49Revision 2.6, March 2025 C++ Object Persistence with ODB

3.8 Making Objects Persistent

The first persist() function expects a constant reference to an instance being persisted. The

second function expects a constant object pointer. Both of these functions can only be used on

objects with application-assigned object ids (Section 14.4.2, "auto").

The second and third persist() functions are similar to the first two except that they operate

on unrestricted references and object pointers. If the identifier of the object being persisted is

assigned by the database, these functions update the id member of the passed instance with the

assigned value. All four functions return the object id of the newly persisted object.

If the database already contains an object of this type with this identifier, the persist() func­

tions throw the odb::object_already_persistent exception. This should never happen

for database-assigned object ids as long as the number of objects persisted does not exceed the

value space of the id type.

When calling the persist() functions, we don’t need to explicitly specify the template type

since it will be automatically deduced from the argument being passed. The following example

shows how we can call these functions:

person john ("John", "Doe", 33);
shared_ptr<person> jane (new person ("Jane", "Doe", 32));

transaction t (db.begin ());

db.persist (john);
unsigned long long jane_id (db.persist (jane));

t.commit ();

cerr << "Jane’s id: " << jane_id << endl;

Notice that in the above code fragment we have created instances that we were planning to make

persistent before starting the transaction. Likewise, we printed Jane’s id after we have committed

the transaction. As a general rule, you should avoid performing operations within the transaction

scope that can be performed before the transaction starts or after it terminates. An active transac­

tion consumes both your application’s resources, such as a database connection, as well as the

database server’s resources, such as object locks. By following the above rule you make sure

these resources are released and made available to other threads in your application and to other

applications as soon as possible.

Some database systems support persisting multiple objects with a single underlying statement

execution which can result in significantly improved performance. For such database systems

ODB provides bulk persist() functions. For details, refer to Section 15.3, "Bulk Database

Operations".

Revision 2.6, March 202550 C++ Object Persistence with ODB

3.8 Making Objects Persistent

3.9 Loading Persistent Objects

Once an object is made persistent, and you know its object id, it can be loaded by the application

using the database::load() function template. This function has two overloaded versions

with the following signatures:

 template <typename T>
 typename object_traits<T>::pointer_type
 load (const typename object_traits<T>::id_type& id);

 template <typename T>
 void
 load (const typename object_traits<T>::id_type& id, T& object);

Given an object id, the first function allocates a new instance of the object class in the dynamic

memory, loads its state from the database, and returns the pointer to the new instance. The second

function loads the object’s state into an existing instance. Both functions throw

odb::object_not_persistent if there is no object of this type with this id in the

database.

When we call the first load() function, we need to explicitly specify the object type. We don’t

need to do this for the second function because the object type will be automatically deduced

from the second argument, for example:

transaction t (db.begin ());

unique_ptr<person> jane (db.load<person> (jane_id));

db.load (jane_id, *jane);

t.commit ();

In certain situations it may be necessary to reload the state of an object from the database. While

this is easy to achieve using the second load() function, ODB provides the

database::reload() function template that has a number of special properties. This func­

tion has two overloaded versions with the following signatures:

 template <typename T>
 void
 reload (T& object);

 template <typename T>
 void
 reload (const object_traits<T>::pointer_type& object);

51Revision 2.6, March 2025 C++ Object Persistence with ODB

3.9 Loading Persistent Objects

The first reload() function expects an object reference, while the second expects an object

pointer. Both functions expect the id member in the passed object to contain a valid object identi­

fier and, similar to load(), both will throw odb::object_not_persistent if there is no

object of this type with this id in the database.

The first special property of reload() compared to the load() function is that it does not

interact with the session’s object cache (Section 11.1, "Object Cache"). That is, if the object being

reloaded is already in the cache, then it will remain there after reload() returns. Similarly, if

the object is not in the cache, then reload() won’t put it there either.

The second special property of the reload() function only manifests itself when operating on

an object with the optimistic concurrency model. In this case, if the states of the object in the

application memory and in the database are the same, then no reloading will occur. For more

information on optimistic concurrency, refer to Chapter 12, "Optimistic Concurrency".

If we don’t know for sure whether an object with a given id is persistent, we can use the find()

function instead of load(), for example:

 template <typename T>
 typename object_traits<T>::pointer_type
 find (const typename object_traits<T>::id_type& id);

 template <typename T>
 bool
 find (const typename object_traits<T>::id_type& id, T& object);

If an object with this id is not found in the database, the first find() function returns a NULL
pointer while the second function leaves the passed instance unmodified and returns false.

If we don’t know the object id, then we can use queries to find the object (or objects) matching

some criteria (Chapter 4, "Querying the Database"). Note, however, that loading an object’s state

using its identifier can be significantly faster than executing a query.

3.10 Updating Persistent Objects

If a persistent object has been modified, we can store the updated state in the database using the

database::update() function template. This function has three overloaded versions with

the following signatures:

 template <typename T>
 void
 update (const T& object);

 template <typename T>
 void
 update (const object_traits<T>::const_pointer_type& object);

Revision 2.6, March 202552 C++ Object Persistence with ODB

3.10 Updating Persistent Objects

 template <typename T>
 void
 update (const object_traits<T>::pointer_type& object);

The first update() function expects an object reference, while the other two expect object

pointers. If the object passed to one of these functions does not exist in the database, update()
throws the odb::object_not_persistent exception (but see a note on optimistic concur­

rency below).

Below is an example of the funds transfer that we talked about in the earlier section on transac­

tions. It uses the hypothetical bank_account persistent class:

void
transfer (database& db,
 unsigned long long from_acc,
 unsigned long long to_acc,
 unsigned int amount)
{
 bank_account from, to;

 transaction t (db.begin ());

 db.load (from_acc, from);

 if (from.balance () < amount)
 throw insufficient_funds ();

 db.load (to_acc, to);

 to.balance (to.balance () + amount);
 from.balance (from.balance () - amount);

 db.update (to);
 db.update (from);

 t.commit ();
}

The same can be accomplished using dynamically allocated objects and the update() function

with object pointer argument, for example:

transaction t (db.begin ());

shared_ptr<bank_account> from (db.load<bank_account> (from_acc));

if (from->balance () < amount)
 throw insufficient_funds ();

shared_ptr<bank_account> to (db.load<bank_account> (to_acc));

53Revision 2.6, March 2025 C++ Object Persistence with ODB

3.10 Updating Persistent Objects

to->balance (to->balance () + amount);
from->balance (from->balance () - amount);

db.update (to);
db.update (from);

t.commit ();

If any of the update() functions are operating on a persistent class with the optimistic concur­

rency model, then they will throw the odb::object_changed exception if the state of the

object in the database has changed since it was last loaded into the application memory. Further­

more, for such classes, update() no longer throws the object_not_persistent excep­

tion if there is no such object in the database. Instead, this condition is treated as a change of

object state and object_changed is thrown instead. For a more detailed discussion of opti­

mistic concurrency, refer to Chapter 12, "Optimistic Concurrency".

In ODB, persistent classes, composite value types, as well as individual data members can be

declared read-only (see Section 14.1.4, "readonly (object)", Section 14.3.6, "readonly

(composite value)", and Section 14.4.12, "readonly (data member)").

If an individual data member is declared read-only, then any changes to this member will be

ignored when updating the database state of an object using any of the above update() func­

tions. A const data member is automatically treated as read-only. If a composite value is

declared read-only then all its data members are treated as read-only.

If the whole object is declared read-only then the database state of this object cannot be changed.

Calling any of the above update() functions for such an object will result in a compile-time

error.

Similar to persist(), for database systems that support this functionality, ODB provides bulk

update() functions. For details, refer to Section 15.3, "Bulk Database Operations".

3.11 Deleting Persistent Objects

To delete a persistent object’s state from the database we use the database::erase() or

database::erase_query() function templates. If the application still has an instance of

the erased object, this instance becomes transient. The erase() function has the following

overloaded versions:

 template <typename T>
 void
 erase (const T& object);

 template <typename T>
 void

Revision 2.6, March 202554 C++ Object Persistence with ODB

3.11 Deleting Persistent Objects

 erase (const object_traits<T>::const_pointer_type& object);

 template <typename T>
 void
 erase (const object_traits<T>::pointer_type& object);

 template <typename T>
 void
 erase (const typename object_traits<T>::id_type& id);

The first erase() function uses an object itself, in the form of an object reference, to delete its

state from the database. The next two functions accomplish the same result but using object

pointers. Note that all three functions leave the passed object unchanged. It simply becomes tran­

sient. The last function uses the object id to identify the object to be deleted. If the object does not

exist in the database, then all four functions throw the odb::object_not_persistent

exception (but see a note on optimistic concurrency below).

We have to specify the object type when calling the last erase() function. The same is unnec­

essary for the first three functions because the object type will be automatically deduced from

their arguments. The following example shows how we can call these functions:

person& john = ...
shared_ptr<jane> jane = ...
unsigned long long joe_id = ...

transaction t (db.begin ());

db.erase (john);
db.erase (jane);
db.erase<person> (joe_id);

t.commit ();

If any of the erase() functions except the last one are operating on a persistent class with the

optimistic concurrency model, then they will throw the odb::object_changed exception if

the state of the object in the database has changed since it was last loaded into the application

memory. Furthermore, for such classes, erase() no longer throws the

object_not_persistent exception if there is no such object in the database. Instead, this

condition is treated as a change of object state and object_changed is thrown instead. For a

more detailed discussion of optimistic concurrency, refer to Chapter 12, "Optimistic Concur­

rency".

Similar to persist() and update(), for database systems that support this functionality,

ODB provides bulk erase() functions. For details, refer to Section 15.3, "Bulk Database Oper­

ations".

55Revision 2.6, March 2025 C++ Object Persistence with ODB

3.11 Deleting Persistent Objects

The erase_query() function allows us to delete the state of multiple objects matching certain

criteria. It uses the query expression of the database::query() function (Chapter 4,

"Querying the Database") and, because the ODB query facility is optional, it is only available if

the --generate-query ODB compiler option was specified. The erase_query() func­

tion has the following overloaded versions:

 template <typename T>
 unsigned long long
 erase_query ();

 template <typename T>
 unsigned long long
 erase_query (const odb::query<T>&);

The first erase_query() function is used to delete the state of all the persistent objects of a

given type stored in the database. The second function uses the passed query instance to only

delete the state of objects matching the query criteria. Both functions return the number of objects

erased. When calling the erase_query() function, we have to explicitly specify the object

type we are erasing. For example:

using query = odb::query<person>;

transaction t (db.begin ());

db.erase_query<person> (query::last == "Doe" && query::age < 30);

t.commit ();

Unlike the query() function, when calling erase_query() we cannot use members from

pointed-to objects in the query expression. However, we can still use a member corresponding to

a pointer as an ordinary object member that has the id type of the pointed-to object (Chapter 6,

"Relationships"). This allows us to compare object ids as well as test the pointer for NULL. As an

example, the following transaction makes sure that all the employee objects that reference an

employer object that is about to be deleted are deleted as well. Here we assume that the

employee class contains a pointer to the employer class. Refer to Chapter 6, "Relationships"

for complete definitions of these classes.

using query = odb::query<employee>;

transaction t (db.begin ());

employer& e = ... // Employer object to be deleted.

db.erase_query<employee> (query::employer == e.id ());
db.erase (e);

t.commit ();

Revision 2.6, March 202556 C++ Object Persistence with ODB

3.11 Deleting Persistent Objects

3.12 Executing Native SQL Statements

In some situations we may need to execute native SQL statements instead of using the

object-oriented database API described above. For example, we may want to tune the database

schema generated by the ODB compiler or take advantage of a feature that is specific to the

database system we are using. The database::execute() function, which has three over­

loaded versions, provides this functionality:

 unsigned long long
 execute (const char* statement);

 unsigned long long
 execute (const std::string& statement);

 unsigned long long
 execute (const char* statement, std::size_t length)

The first execute() function expects the SQL statement as a zero-terminated C-string. The last

version expects the explicit statement length as the second argument and the statement itself may

contain ’\0’ characters, for example, to represent binary data, if the database system supports it.

All three functions return the number of rows that were affected by the statement. For example:

transaction t (db.begin ());

db.execute ("DROP TABLE test");
db.execute ("CREATE TABLE test (n INT PRIMARY KEY)");

t.commit ();

While these functions must always be called within a transaction, it may be necessary to execute

a native statement outside a transaction. This can be done using the connec­
tion::execute() functions as described in Section 3.6, "Connections".

3.13 Tracing SQL Statement Execution

Oftentimes it is useful to understand what SQL statements are executed as a result of high-level

database operations. For example, we can use this information to figure out why certain transac­

tions don’t produce desired results or why they take longer than expected.

While this information can usually be obtained from the database logs, ODB provides an applica­

tion-side SQL statement tracing support that is both more convenient and finer-grained. For

example, in a typical situation that calls for tracing we would like to see the SQL statements

executed as a result of a specific transaction. While it may be difficult to extract such a subset of

statements from the database logs, it is easy to achieve with ODB tracing support:

57Revision 2.6, March 2025 C++ Object Persistence with ODB

3.12 Executing Native SQL Statements

transaction t (db.begin ());
t.tracer (stderr_tracer);

...

t.commit ();

ODB allows us to specify a tracer on the database, connection, and transaction levels. If specified

for the database, then all the statements executed on this database will be traced. On the other

hand, if a tracer is specified for the connection, then only the SQL statements executed on this

connection will be traced. Similarly, a tracer specified for a transaction will only show statements

that are executed as part of this transaction. All three classes (odb::database,

odb::connection, and odb::transaction) provide the identical tracing API:

 void
 tracer (odb::tracer&);

 void
 tracer (odb::tracer*);

 odb::tracer*
 tracer () const;

The first two tracer() functions allow us to set the tracer object with the second one allowing

us to clear the current tracer by passing a NULL pointer. The last tracer() function allows us

to get the current tracer object. It returns a NULL pointer if there is no tracer in effect. Note that

the tracing API does not manage the lifetime of the tracer object. The tracer should be valid for as

long as it is being used. Furthermore, the tracing API is not thread-safe. Trying to set a tracer

from multiple threads simultaneously will result in undefined behavior.

The odb::tracer class defines a callback interface that can be used to create custom tracer

implementations. The odb::stderr_tracer and odb::stderr_full_tracer are

built-in tracer implementations provided by the ODB runtime. They both print SQL statements

being executed to the standard error stream. The full tracer, in addition to tracing statement

executions, also traces their preparations and deallocations. One situation where the full tracer

can be particularly useful is if a statement (for example a custom query) contains a syntax error.

In this case the error will be detected during preparation and, as a result, the statement will never

be executed. The only way to see such a statement is by using the full tracing.

The odb::tracer class is defined in the <odb/tracer.hxx> header file which you will

need to include in order to make this class available in your application. The odb::tracer

interface provided the following callback functions:

namespace odb
{
 class tracer
 {

Revision 2.6, March 202558 C++ Object Persistence with ODB

3.13 Tracing SQL Statement Execution

 public:
 virtual void
 prepare (connection&, const statement&);

 virtual void
 execute (connection&, const statement&);

 virtual void
 execute (connection&, const char* statement) = 0;

 virtual void
 deallocate (connection&, const statement&);
 };
}

The prepare() and deallocate() functions are called when a prepared statement is

created and destroyed, respectively. The first execute() function is called when a prepared

statement is executed while the second one is called when a normal statement is executed. The

default implementations for the prepare() and deallocate() functions do nothing while

the first execute() function calls the second one passing the statement text as the second argu­

ment. As a result, if all you are interested in are the SQL statements being executed, then you

only need to override the second execute() function.

In addition to the common odb::tracer interface, each database runtime provides a

database-specific version as odb::<database>::tracer. It has exactly the same interface

as the common version except that the connection and statement types are

database-specific, which gives us access to additional, database-specific information.

As an example, consider a more elaborate, PostgreSQL-specific tracer implementation. Here we

rely on the fact that the PostgreSQL ODB runtime uses names to identify prepared statements and

this information can be obtained from the odb::pgsql::statement object:

#include <odb/pgsql/tracer.hxx>
#include <odb/pgsql/database.hxx>
#include <odb/pgsql/connection.hxx>
#include <odb/pgsql/statement.hxx>

class pgsql_tracer: public odb::pgsql::tracer
{
 virtual void
 prepare (odb::pgsql::connection& c, const odb::pgsql::statement& s)
 {
 cerr << c.database ().db () << ": PREPARE " << s.name ()
 << " AS " << s.text () << endl;
 }

 virtual void
 execute (odb::pgsql::connection& c, const odb::pgsql::statement& s)

59Revision 2.6, March 2025 C++ Object Persistence with ODB

3.13 Tracing SQL Statement Execution

 {
 cerr << c.database ().db () << ": EXECUTE " << s.name () << endl;
 }

 virtual void
 execute (odb::pgsql::connection& c, const char* statement)
 {
 cerr << c.database ().db () << ": " << statement << endl;
 }

 virtual void
 deallocate (odb::pgsql::connection& c, const odb::pgsql::statement& s)
 {
 cerr << c.database ().db () << ": DEALLOCATE " << s.name () << endl;
 }
};

Note also that you can only set a database-specific tracer object using a database-specific

database instance, for example:

pgsql_tracer tracer;

odb::database& db = ...;
db.tracer (tracer); // Compile error.

odb::pgsql::database& db = ...;
db.tracer (tracer); // Ok.

3.14 ODB Exceptions

In the previous sections we have already mentioned some of the exceptions that can be thrown by

the database functions. In this section we will discuss the ODB exception hierarchy and document

all the exceptions that can be thrown by the common ODB runtime.

The root of the ODB exception hierarchy is the abstract odb::exception class. This class

derives from std::exception and has the following interface:

namespace odb
{
 struct exception: std::exception
 {
 virtual const char*
 what () const throw () = 0;
 };
}

Revision 2.6, March 202560 C++ Object Persistence with ODB

3.14 ODB Exceptions

Catching this exception guarantees that we will catch all the exceptions thrown by ODB. The

what() function returns a human-readable description of the condition that triggered the excep­

tion.

The concrete exceptions that can be thrown by ODB are presented in the following listing:

namespace odb
{
 struct null_pointer: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Transaction exceptions.
 //
 struct already_in_transaction: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct not_in_transaction: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct transaction_already_finalized: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Session exceptions.
 //
 struct already_in_session: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct not_in_session: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct session_required: exception
 {

61Revision 2.6, March 2025 C++ Object Persistence with ODB

3.14 ODB Exceptions

 virtual const char*
 what () const throw ();
 };

 // Database operations exceptions.
 //
 struct recoverable: exception
 {
 };

 struct connection_lost: recoverable
 {
 virtual const char*
 what () const throw ();
 };

 struct timeout: recoverable
 {
 virtual const char*
 what () const throw ();
 };

 struct deadlock: recoverable
 {
 virtual const char*
 what () const throw ();
 };

 struct object_not_persistent: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct object_already_persistent: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct object_changed: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct result_not_cached: exception
 {
 virtual const char*
 what () const throw ();
 };

Revision 2.6, March 202562 C++ Object Persistence with ODB

3.14 ODB Exceptions

 struct database_exception: exception
 {
 };

 // Polymorphism support exceptions.
 //
 struct abstract_class: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct no_type_info: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Prepared query support exceptions.
 //
 struct prepared_already_cached: exception
 {
 const char*
 name () const;

 virtual const char*
 what () const throw ();
 };

 struct prepared_type_mismatch: exception
 {
 const char*
 name () const;

 virtual const char*
 what () const throw ();
 };

 // Schema catalog exceptions.
 //
 struct unknown_schema: exception
 {
 const std::string&
 name () const;

 virtual const char*
 what () const throw ();
 };

 struct unknown_schema_version: exception

63Revision 2.6, March 2025 C++ Object Persistence with ODB

3.14 ODB Exceptions

 {
 schema_version
 version () const;

 virtual const char*
 what () const throw ();
 };

 // Section exceptions.
 //
 struct section_not_loaded: exception
 {
 virtual const char*
 what () const throw ();
 };

 struct section_not_in_object: exception
 {
 virtual const char*
 what () const throw ();
 };

 // Bulk operation exceptions.
 //
 struct multiple_exceptions: exception
 {
 ...

 virtual const char*
 what () const throw ();
 };
}

The null_pointer exception is thrown when a pointer to a persistent object declared

non-NULL with the db not_null or db value_not_null pragma has the NULL value.

See Chapter 6, "Relationships" for details.

The next three exceptions (already_in_transaction, not_in_transaction,

transaction_already_finalized) are thrown by the odb::transaction class and

are discussed in Section 3.5, "Transactions".

The next two exceptions (already_in_session, and not_in_session) are thrown by

the odb::session class and are discussed in Chapter 11, "Session".

The session_required exception is thrown when ODB detects that correctly loading a bidi­

rectional object relationship requires a session but one is not used. See Section 6.2, "Bidirectional

Relationships" for more information on this exception.

Revision 2.6, March 202564 C++ Object Persistence with ODB

3.14 ODB Exceptions

The recoverable exception serves as a common base for all the recoverable exceptions,

which are: connection_lost, timeout, and deadlock. The connection_lost

exception is thrown when a connection to the database is lost. Similarly, the timeout exception

is thrown if one of the database operations or the whole transaction has timed out. The dead­
lock exception is thrown when a transaction deadlock is detected by the database system. These

exceptions can be thrown by any database function. See Section 3.7, "Error Handling and Recov­

ery" for details.

The object_already_persistent exception is thrown by the persist() database

function. See Section 3.8, "Making Objects Persistent" for details.

The object_not_persistent exception is thrown by the load(), update(), and

erase() database functions. Refer to Section 3.9, "Loading Persistent Objects", Section 3.10,

"Updating Persistent Objects", and Section 3.11, "Deleting Persistent Objects" for more informa­

tion.

The object_changed exception is thrown by the update() database function and certain

erase() database functions when operating on objects with the optimistic concurrency model.

See Chapter 12, "Optimistic Concurrency" for details.

The result_not_cached exception is thrown by the query result class. Refer to Section 4.4,

"Query Result" for details.

The database_exception exception is a base class for all database system-specific excep­

tions that are thrown by the database system-specific runtime library. Refer to Part II, "Database

Systems" for more information.

The abstract_class exception is thrown by the database functions when we attempt to

persist, update, load, or erase an instance of a polymorphic abstract class. For more information

on abstract classes, refer to Section 14.1.3, "abstract".

The no_type_info exception is thrown by the database functions when we attempt to persist,

update, load, or erase an instance of a polymorphic class for which no type information is present

in the application. This normally means that the generated database support code for this class has

not been linked (or dynamically loaded) into the application or the discriminator value has not

been mapped to a persistent class. For more information on polymorphism support, refer to

Section 8.2, "Polymorphism Inheritance".

The prepared_already_cached exception is thrown by the cache_query() function if

a prepared query with the specified name is already cached. The prepared_type_mismatch

exception is thrown by the lookup_query() function if the specified prepared query object

type or parameters type does not match the one in the cache. Refer to Section 4.5, "Prepared

Queries" for details.

65Revision 2.6, March 2025 C++ Object Persistence with ODB

3.14 ODB Exceptions

The unknown_schema exception is thrown by the odb::schema_catalog class if a

schema with the specified name is not found. Refer to Section 3.4, "Database" for details. The

unknown_schema_version exception is thrown by the schema_catalog functions that

deal with database schema evolution if the passed or current version is unknow. Refer to Chapter

13, "Database Schema Evolution" for details.

The section_not_loaded exception is thrown if we attempt to update an object section that

hasn’t been loaded. The section_not_in_object exception is thrown if the section

instance being loaded or updated does not belong to the corresponding object. See Chapter 9,

"Sections" for more information on these exceptions.

The multiple_exceptions exception is thrown by the bulk API functions. Refer to Section

15.3, "Bulk Database Operations" for details.

The odb::exception class is defined in the <odb/exception.hxx> header file. All the

concrete ODB exceptions are defined in <odb/exceptions.hxx> which also includes

<odb/exception.hxx>. Normally you don’t need to include either of these two headers

because they are automatically included by <odb/database.hxx>. However, if the source

file that handles ODB exceptions does not include <odb/database.hxx>, then you will need

to explicitly include one of these headers.

Revision 2.6, March 202566 C++ Object Persistence with ODB

3.14 ODB Exceptions

4 Querying the Database

If we don’t know the identifiers of the objects that we are looking for, we can use queries to

search the database for objects matching certain criteria. The ODB query facility is optional and

we need to explicitly request the generation of the necessary database support code with the

--generate-query ODB compiler option.

ODB provides a flexible query API that offers two distinct levels of abstraction from the database

system query language such as SQL. At the high level we are presented with an easy to use yet

powerful object-oriented query language, called ODB Query Language. This query language is

modeled after and is integrated into C++ allowing us to write expressive and safe queries that

look and feel like ordinary C++. We have already seen examples of these queries in the introduc­

tory chapters. Below is another, more interesting, example:

 using query = odb::query<person>;
 using result = odb::result<person>;

 unsigned short age;
 query q (query::first == "John" && query::age < query::_ref (age));

 for (age = 10; age < 100; age += 10)
 {
 result r (db.query<person> (q));
 ...
 }

At the low level, queries can be written as predicates using the database system-native query

language such as the WHERE predicate from the SQL SELECT statement. This language will be

referred to as native query language. At this level ODB still takes care of converting query

parameters from C++ to the database system format. Below is the re-implementation of the above

example using SQL as the native query language:

 query q ("first = ’John’ AND age = " + query::_ref (age));

Note that at this level we lose the static typing of query expressions. For example, if we wrote

something like this:

 query q (query::first == 123 && query::agee < query::_ref (age));

We would get two errors during the C++ compilation. The first would indicate that we cannot

compare query::first to an integer and the second would pick the misspelling in

query::agee. On the other hand, if we wrote something like this:

67Revision 2.6, March 2025 C++ Object Persistence with ODB

4 Querying the Database

 query q ("first = 123 AND agee = " + query::_ref (age));

It would compile fine and would trigger an error only when executed by the database system.

We can also combine the two query languages in a single query, for example:

 query q ("first = ’John’ AND" + (query::age < query::_ref (age)));

4.1 ODB Query Language

An ODB query is an expression that tells the database system whether any given object matches

the desired criteria. As such, a query expression always evaluates as true or false. At the

higher level, an expression consists of other expressions combined with logical operators such as

&& (AND), || (OR), and ! (NOT). For example:

 using query = odb::query<person>;

 query q (query::first == "John" || query::age == 31);

At the core of every query expression lie simple expressions which involve one or more object

members, values, or parameters. To refer to an object member we use an expression such as

query::first above. The names of members in the query class are derived from the names

of data members in the object class by removing the common member name decorations, such as

leading and trailing underscores, the m_ prefix, etc.

In a simple expression an object member can be compared to a value, parameter, or another

member using a number of predefined operators and functions. The following table gives an

overview of the available expressions:

Revision 2.6, March 202568 C++ Object Persistence with ODB

4.1 ODB Query Language

Operator Description Example

== equal query::age == 31

!= unequal query::age != 31

< less than query::age < 31

> greater than query::age > 31

<= less than or equal query::age <= 31

>= greater than or equal query::age >= 31

in() one of the values query::age.in (30, 32, 34)

in_range()
one of the values in

range

query::age.in_range (begin,
end)

like() matches a pattern query::first.like ("J%")

is_null() value is NULL query::age.is_null ()

is_not_null() value is NOT NULL query::age.is_not_null ()

The in() function accepts a maximum of five arguments. Use the in_range() function if

you need to compare to more than five values. This function accepts a pair of standard C++ itera­

tors and compares to all the values from the begin position inclusive and until and excluding the

end position. The following code fragment shows how we can use these functions:

 std::vector<string> names;

 names.push_back ("John");
 names.push_back ("Jack");
 names.push_back ("Jane");

 query q1 (query::first.in ("John", "Jack", "Jane"));
 query q2 (query::first.in_range (names.begin (), names.end ()));

Note that the like() function does not perform any translation of the database system-specific

extensions of the SQL LIKE operator. As a result, if you would like your application to be

portable among various database systems, then limit the special characters used in the pattern to %
(matches zero or more characters) and _ (matches exactly one character). It is also possible to

specify the escape character as a second argument to the like() function. This character can

then be used to escape the special characters (% and _) in the pattern. For example, the following

query will match any two characters separated by an underscore:

69Revision 2.6, March 2025 C++ Object Persistence with ODB

4.1 ODB Query Language

 query q (query::name.like ("_!__", "!"));

The operator precedence in the query expressions are the same as for equivalent C++ operators.

We can use parentheses to make sure the expression is evaluated in the desired order. For

example:

 query q ((query::first == "John" || query::first == "Jane") &&
 query::age < 31);

4.2 Parameter Binding

An instance of the odb::query class encapsulates two parts of information about the query:

the query expression and the query parameters. Parameters can be bound to C++ variables either

by value or by reference.

If a parameter is bound by value, then the value for this parameter is copied from the C++ vari­

able to the query instance at the query construction time. On the other hand, if a parameter is

bound by reference, then the query instance stores a reference to the bound variable. The actual

value of the parameter is only extracted at the query execution time. Consider, for example, the

following two queries:

 string name ("John");

 query q1 (query::first == query::_val (name));
 query q2 (query::first == query::_ref (name));

 name = "Jane";

 db.query<person> (q1); // Find John.
 db.query<person> (q2); // Find Jane.

The odb::query class provides two special functions, _val() and _ref(), that allow us to

bind the parameter either by value or by reference, respectively. In the ODB query language, if

the binding is not specified explicitly, the value semantic is used by default. In the native query

language, binding must always be specified explicitly. For example:

 query q1 (query::age < age); // By value.
 query q2 (query::age < query::_val (age)); // By value.
 query q3 (query::age < query::_ref (age)); // By reference.

 query q4 ("age < " + age); // Error.
 query q5 ("age < " + query::_val (age)); // By value.
 query q6 ("age < " + query::_ref (age)); // By reference.

Revision 2.6, March 202570 C++ Object Persistence with ODB

4.2 Parameter Binding

A query that only has by-value parameters does not depend on any other variables and is

self-sufficient once constructed. A query that has one or more by-reference parameters depends

on the bound variables until the query is executed. If one such variable goes out of scope and we

execute the query, the behavior is undefined.

4.3 Executing a Query

Once we have the query instance ready and by-reference parameters initialized, we can execute

the query using the database::query() function template. It has two overloaded versions:

 template <typename T>
 result<T>
 query (bool cache = true);

 template <typename T>
 result<T>
 query (const odb::query<T>&, bool cache = true);

The first query() function is used to return all the persistent objects of a given type stored in

the database. The second function uses the passed query instance to only return objects matching

the query criteria. The cache argument determines whether the objects’ states should be cached

in the application’s memory or if they should be returned by the database system one by one as

the iteration over the result progresses. The result caching is discussed in detail in the next

section.

When calling the query() function, we have to explicitly specify the object type we are query­

ing. For example:

 using query = odb::query<person>;
 using result = odb::result<person>;

 result all (db.query<person> ());
 result johns (db.query<person> (query::first == "John"));

Note that it is not required to explicitly create a named query variable before executing it. For

example, the following two queries are equivalent:

 query q (query::first == "John");

 result r1 (db.query<person> (q));
 result r1 (db.query<person> (query::first == "John"));

Normally, we would create a named query instance if we are planning to run the same query

multiple times and would use the in-line version for those that are executed only once (see also

Section 4.5, "Prepared Queries" for a more optimal way to re-execute the same query multiple

times). A named query instance that does not have any by-reference parameters is immutable and

71Revision 2.6, March 2025 C++ Object Persistence with ODB

4.3 Executing a Query

can be shared between multiple threads without synchronization. On the other hand, a query

instance with by-reference parameters is modified every time it is executed. If such a query is

shared among multiple threads, then access to this query instance must be synchronized from the

execution point and until the completion of the iteration over the result.

It is also possible to create queries from other queries by combining them using logical operators.

For example:

result
find_minors (database& db, const query& name_query)
{
 return db.query<person> (name_query && query::age < 18);
}

result r (find_minors (db, query::first == "John"));

The result of executing a query is zero, one, or more objects matching the query criteria. The

query() function returns this result as an instance of the odb::result class template, which

provides a stream-like interface and is discussed in detail in the next section.

In situations where we know that a query produces at most one element, we can instead use the

database::query_one() and database::query_value() shortcut functions, for

example:

 using query = odb::query<person>;

 unique_ptr<person> p (
 db.query_one<person> (
 query::email == "jon@example.com"));

The shortcut query functions have the following signatures:

 template <typename T>
 typename object_traits<T>::pointer_type
 query_one ();

 template <typename T>
 bool
 query_one (T&);

 template <typename T>
 T
 query_value ();

 template <typename T>
 typename object_traits<T>::pointer_type
 query_one (const odb::query<T>&);

 template <typename T>

Revision 2.6, March 202572 C++ Object Persistence with ODB

4.3 Executing a Query

 bool
 query_one (const odb::query<T>&, T&);

 template <typename T>
 T
 query_value (const odb::query<T>&);

Similar to query(), the first three functions are used to return the only persistent object of a

given type stored in the database. The second three versions use the passed query instance to only

return the object matching the query criteria.

Similar to the database::find() functions (Section 3.9, "Loading Persistent Objects"),

query_one() can either allocate a new instance of the object class in the dynamic memory or

it can load the object’s state into an existing instance. The query_value() function allocates

and returns the object by value.

The query_one() function allows us to determine if the query result contains zero or one

element. If no objects matching the query criteria were found in the database, the first version of

query_one() returns the NULL pointer while the second — false. If the second version

returns false, then the passed object remains unchanged. For example:

 if (unique_ptr<person> p = db.query_one<person> (
 query::email == "jon@example.com"))
 {
 ...
 }

 person p;
 if (db.query_one<person> (query::email == "jon@example.com", p))
 {
 ...
 }

If the query executed using query_one() or query_value() returns more than one

element, then these functions fail with an assertion. Additionally, query_value() also fails

with an assertion if the query returned no elements.

Common situations where we can use the shortcut functions are a query condition that uses a data

member with the unique constraint (at most one element returned; see Section 14.7, "Index

Definition Pragmas") as well as aggregate queries (exactly one element returned; see Chapter 10,

"Views").

73Revision 2.6, March 2025 C++ Object Persistence with ODB

4.3 Executing a Query

4.4 Query Result

The database::query() function returns the result of executing a query as an instance of

the odb::result class template, for example:

 using query = odb::query<person>;
 using result = odb::result<person>;

 result johns (db.query<person> (query::first == "John"));

It is best to view an instance of odb::result as a handle to a stream, such as a socket stream.

While we can make a copy of a result or assign one result to another, the two instances will refer

to the same result stream. Advancing the current position in one instance will also advance it in

another. The result instance is only usable within the transaction it was created in. Trying to

manipulate the result after the transaction has terminated leads to undefined behavior.

The odb::result class template conforms to the standard C++ sequence requirements and has

the following interface:

namespace odb
{
 template <typename T>
 class result
 {
 public:
 using iterator = odb::result_iterator<T>;

 public:
 result ();

 result (const result&);

 result&
 operator= (const result&);

 void
 swap (result&)

 public:
 iterator
 begin ();

 iterator
 end ();

 public:
 void
 cache ();

Revision 2.6, March 202574 C++ Object Persistence with ODB

4.4 Query Result

 bool
 empty () const;

 std::size_t
 size () const;
 };
}

The default constructor creates an empty result set. The cache() function caches the returned

objects’ state in the application’s memory. We have already mentioned result caching when we

talked about query execution. As you may remember the database::query() function

caches the result unless instructed not to by the caller. The cache() function allows us to cache

the result at a later stage if it wasn’t already cached during query execution.

If the result is cached, the database state of all the returned objects is stored in the application’s

memory. Note that the actual objects are still only instantiated on demand during result iteration.

It is the raw database state that is cached in memory. In contrast, for uncached results the object’s

state is sent by the database system one object at a time as the iteration progresses.

Uncached results can improve the performance of both the application and the database system in

situations where we have a large number of objects in the result or if we will only examine a

small portion of the returned objects. However, uncached results have a number of limitations.

There can only be one uncached result in a transaction. Creating another result (cached or

uncached) by calling database::query() will invalidate the existing uncached result.

Furthermore, calling any other database functions, such as update() or erase() will also

invalidate the uncached result. It also follows that uncached results cannot be used on objects

with containers (Chapter 5, "Containers") since loading a container would invalidate the

uncached result.

The empty() function returns true if there are no objects in the result and false otherwise.

The size() function can only be called for cached results. It returns the number of objects in

the result. If we call this function on an uncached result, the odb::result_not_cached

exception is thrown.

To iterate over the objects in a result we use the begin() and end() functions together with

the odb::result<T>::iterator type, for example:

 result r (db.query<person> (query::first == "John"));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 ...
 }

75Revision 2.6, March 2025 C++ Object Persistence with ODB

4.4 Query Result

In C++11 we can use the auto-typed variabe instead of spelling the iterator type explicitly, for

example:

 for (auto i (r.begin ()); i != r.end (); ++i)
 {
 ...
 }

The C++11 range-based for-loop can be used to further simplify the iteration:

 for (person& p: r)
 {
 ...
 }

The result iterator is an input iterator which means that the only two position operations that it

supports are to move to the next object and to determine whether the end of the result stream has

been reached. In fact, the result iterator can only be in two states: the current position and the end

position. If we have two iterators pointing to the current position and then we advance one of

them, the other will advance as well. This, for example, means that it doesn’t make sense to store

an iterator that points to some object of interest in the result stream with the intent of dereferenc­

ing it after the iteration is over. Instead, we would need to store the object itself. We also cannot

iterate over the same result multiple times without re-executing the query.

The result iterator has the following dereference functions that can be used to access the

pointed-to object:

namespace odb
{
 template <typename T>
 class result_iterator
 {
 public:
 T*
 operator-> () const;

 T&
 operator* () const;

 typename object_traits<T>::pointer_type
 load ();

 void
 load (T& x);

 typename object_traits<T>::id_type
 id ();
 };
}

Revision 2.6, March 202576 C++ Object Persistence with ODB

4.4 Query Result

When we call the * or -> operator, the iterator will allocate a new instance of the object class in

the dynamic memory, load its state from the database state, and return a reference or pointer to

the new instance. The iterator maintains the ownership of the returned object and will return the

same pointer for subsequent calls to either of these operators until it is advanced to the next object

or we call the first load() function (see below). For example:

 result r (db.query<person> (query::first == "John"));

 for (result::iterator i (r.begin ()); i != r.end ();)
 {
 cout << i->last () << endl; // Create an object.
 person& p (*i); // Reference to the same object.
 cout << p.age () << endl;
 ++i; // Free the object.
 }

The overloaded result_iterator::load() functions are similar to

database::load(). The first function returns a dynamically allocated instance of the current

object. As an optimization, if the iterator already owns an object as a result of an earlier call to the

* or -> operator, then it relinquishes the ownership of this object and returns it instead. This

allows us to write code like this without worrying about a double allocation:

 result r (db.query<person> (query::first == "John"));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 if (i->last == "Doe")
 {
 unique_ptr p (i.load ());
 ...
 }
 }

Note, however, that because of this optimization, a subsequent to load() call to the * or ->

operator results in the allocation of a new object.

The second load() function allows us to load the current object’s state into an existing

instance. For example:

 result r (db.query<person> (query::first == "John"));

 person p;
 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 i.load (p);
 cout << p.last () << endl;
 cout << i.age () << endl;
 }

77Revision 2.6, March 2025 C++ Object Persistence with ODB

4.4 Query Result

The id() function return the object id of the current object. While we can achieve the same by

loading the object and getting its id, this function is more efficient since it doesn’t actually create

the object. This can be useful when all we need is the object’s identifier. For example:

 std::set<unsigned long long> set = ...; // Persons of interest.

 result r (db.query<person> (query::first == "John"));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 if (set.find (i.id ()) != set.end ()) // No object loaded.
 {
 cout << i->first () << endl; // Object loaded.
 }
 }

4.5 Prepared Queries

Most modern relational database systems have the notion of a prepared statement. Prepared state­

ments allow us to perform the potentially expensive tasks of parsing SQL, preparing the query

execution plan, etc., once and then executing the same query multiple times, potentially using

different values for parameters in each execution.

In ODB all the non-query database operations such as persist(), load(), update(), etc.,

are implemented in terms of prepared statements that are cached and reused. While the

query(), query_one(), and query_value() database operations also use prepared state­

ments, these statements are not cached or reused by default since ODB has no knowledge of

whether a query will be executed multiple times or only once. Instead, ODB provides a mecha­

nism, called prepared queries, that allows us to prepare a query once and execute it multiple

times. In other words, ODB prepared queries are a thin wrapper around the underlying database’s

prepared statement functionality.

In most cases ODB shields the application developer from database connection management and

multi-threading issues. However, when it comes to prepared queries, a basic understanding of

how ODB manages these aspects is required. Conceptually, the odb::database class repre­

sents a specific database, that is, a data store. However, underneath, it maintains one or more

connections to this database. A connection can be used only by a single thread at a time. When

we start a transaction (by calling database::begin()), the transaction instance obtains a

connection and holds on to it until the transaction is committed or rolled back. During this time

no other thread can use this connection. When the transaction releases the connection, it may be

closed or reused by another transaction in this or another thread. What exactly happens to a

connection after it has been released depends on the connection factory that is used by the

odb::database instance. For more information on connection factories, refer to Part II,

"Database Systems".

Revision 2.6, March 202578 C++ Object Persistence with ODB

4.5 Prepared Queries

A query prepared on one connection cannot be executed on another. In other words, a prepared

query is associated with the connection. One important implication of this restriction is that we

cannot prepare a query in one transaction and then try to execute it in another without making

sure that both transactions use the same connection.

To enable the prepared query functionality we need to specify the --generate-prepared
ODB compiler option. If we are planning to always prepare our queries, then we can disable the

once-off query execution support by also specifying the --omit-unprepared option.

To prepare a query we use the prepare_query() function template. This function can be

called on both the odb::database and odb::connection instances. The

odb::database version simply obtains the connection used by the currently active transaction

and calls the corresponding odb::connection version. If no transaction is currently active,

then this function throws the odb::not_in_transaction exception (Section 3.5, "Transac­

tions"). The prepare_query() function has the following signature:

 template <typename T>
 prepared_query<T>
 prepare_query (const char* name, const odb::query<T>&);

The first argument to the prepare_query() function is the prepared query name. This name

is used as a key for prepared query caching (discussed later) and must be unique. For some

databases, notably PostgreSQL, it is also used as a name of the underlying prepared statement.

The name "object_query" (for example, "person_query") is reserved for the once-off

queries executed by the database::query() function. Note that the prepare_query()

function makes only a shallow copy of this argument, which means that the name must be valid

for the lifetime of the returned prepared_query instance.

The second argument to the prepare_query() function is the query criteria. It has the same

semantics as in the query() function discussed in Section 4.3, "Executing a Query". Similar to

query(), we also have to explicitly specify the object type that we will be querying. For

example:

using query = odb::query<person>;
using prep_query = odb::prepared_query<person>;

prep_query pq (
 db.prepare_query<person> ("person-age-query", query::age > 50));

The result of executing the prepare_query() function is the prepared_query instance

that represent the prepared query. It is best to view prepared_query as a handle to the under­

lying prepared statement. While we can make a copy of it or assign one prepared_query to

another, the two instances will refer to the same prepared statement. Once the last instance of

prepared_query referencing a specific prepared statement is destroyed, this statement is

released. The prepared_query class template has the following interface:

79Revision 2.6, March 2025 C++ Object Persistence with ODB

4.5 Prepared Queries

namespace odb
{
 template <typename T>
 struct prepared_query
 {
 prepared_query ();

 prepared_query (const prepared_query&)
 prepared_query& operator= (const prepared_query&)

 result<T>
 execute (bool cache = true);

 typename object_traits<T>::pointer_type
 execute_one ();

 bool
 execute_one (T& object);

 T
 execute_value ();

 const char*
 name () const;

 statement&
 statement () const;

 operator unspecified_bool_type () const;
 };
}

The default constructor creates an empty prepared_query instance, that is, an instance that

does not reference a prepared statement and therefore cannot be executed. The only way to create

a non-empty prepared query is by calling the prepare_query() function discussed above. To

test whether the prepared query is empty, we can use the implicit conversion operator to a

boolean type. For example:

 prepared_query<person> pq;

 if (pq)
 {
 // Not empty.
 ...
 }

The execute() function executes the query and returns the result instance. The cache argu­

ment indicates whether the result should be cached and has the same semantics as in the

query() function. In fact, conceptually, prepare_query() and execute() are just the

Revision 2.6, March 202580 C++ Object Persistence with ODB

4.5 Prepared Queries

query() function split into two: prepare_query() takes the first query() argument (the

query condition) while execute() takes the second (the cache flag). Note also that re-execut­

ing a prepared query invalidates the previous execution result, whether cached or uncached.

The execute_one() and execute_value() functions can be used as shortcuts to execute

a query that is known to return at most one or exactly one object, respectively. The arguments and

return values in these functions have the same semantics as in query_one() and

query_value(). And similar to execute() above, prepare_query() and

execute_one/value() can be seen as the query_one/value() function split into two:

prepare_query() takes the first query_one/value() argument (the query condition)

while execute_one/value() takes the second argument (if any) and returns the result. Note

also that execute_one/value() never caches its result but invalidates the result of any

previous execute() call on the same prepared query.

The name() function returns the prepared query name. This is the same name as was passed as

the first argument in the prepare_query() call. The statement() function returns a refer­

ence to the underlying prepared statement. Note also that calling any of these functions on an

empty prepared_query instance results in undefined behavior.

The simplest use-case for a prepared query is the need to execute the same query multiple times

within a single transaction. Consider the following example that queries for people that are older

than a number of different ages. This and subsequent code fragments are taken from the

prepared example in the odb-examples package.

using query = odb::query<person>;
using prep_query = odb::prepared_query<person>;
using result = odb::result<person>;

transaction t (db.begin ());

unsigned short age;
query q (query::age > query::_ref (age));
prep_query pq (db.prepare_query<person> ("person-age-query", q));

for (age = 90; age > 40; age -= 10)
{
 result r (pq.execute ());
 ...
}

t.commit ();

Another scenario is the need to reuse the same query in multiple transactions that are executed at

once. As was mentioned above, in this case we need to make sure that the prepared query and all

the transactions use the same connection. Consider an alternative version of the above example

that executes each query in a separate transaction:

81Revision 2.6, March 2025 C++ Object Persistence with ODB

4.5 Prepared Queries

connection_ptr conn (db.connection ());

unsigned short age;
query q (query::age > query::_ref (age));
prep_query pq (conn->prepare_query<person> ("person-age-query", q));

for (age = 90; age > 40; age -= 10)
{
 transaction t (conn->begin ());

 result r (pq.execute ());
 ...

 t.commit ();
}

Note that with this approach we hold on to the database connection until all the transactions

involving the prepared query are executed. In particular, this means that while we are busy, the

connection cannot be reused by another thread. Therefore, this approach is only recommended if

all the transactions are executed close to each other. Also note that an uncached (see below)

prepared query is invalidated once we release the connection on which it was prepared.

If we need to reuse a prepared query in transactions that are executed at various times, potentially

in different threads, then the recommended approach is to cache the prepared query on the

connection. To support this functionality the odb::database and odb::connection
classes provide the following function templates. Similar to prepare_query(), the

odb::database versions of the below functions call the corresponding odb::connection
versions using the currently active transaction to resolve the connection.

 template <typename T>
 void
 cache_query (const prepared_query<T>&);

 template <typename T, typename P>
 void
 cache_query (const prepared_query<T>&,
 std::[auto|unique]_ptr<P> params);

 template <typename T>
 prepared_query<T>
 lookup_query (const char* name);

 template <typename T, typename P>
 prepared_query<T>
 lookup_query (const char* name, P*& params);

Revision 2.6, March 202582 C++ Object Persistence with ODB

4.5 Prepared Queries

The cache_query() function caches the passed prepared query on the connection. The second

overloaded version of cache_query() also takes a pointer to the by-reference query parame­

ters. In C++98/03 it should be std::auto_ptr while in C++11 — std::unique_ptr. The

cache_query() function assumes ownership of the passed params argument. If a prepared

query with the same name is already cached on this connection, then the

odb::prepared_already_cached exception is thrown.

The lookup_query() function looks up a previously cached prepared query given its name.

The second overloaded version of lookup_query() also returns a pointer to the by-reference

query parameters. If a prepared query with this name has not been cached, then an empty

prepared_query instance is returned. If a prepared query with this name has been cached but

either the object type or the parameters type does not match that which was cached, then the

odb::prepared_type_mismatch exception is thrown.

As a first example of the prepared query cache functionality, consider the case that does not use

any by-reference parameters:

for (unsigned short i (0); i < 5; ++i)
{
 transaction t (db.begin ());

 prep_query pq (db.lookup_query<person> ("person-age-query"));

 if (!pq)
 {
 pq = db.prepare_query<person> (
 "person-val-age-query", query::age > 50);
 db.cache_query (pq);
 }

 result r (pq.execute ());
 ...

 t.commit ();

 // Do some other work.
 //
 ...
}

The following example shows how to do the same but for a query that includes by-reference

parameters. In this case the parameters are cached together with the prepared query.

for (unsigned short age (90); age > 40; age -= 10)
{
 transaction t (db.begin ());

 unsigned short* age_param;

83Revision 2.6, March 2025 C++ Object Persistence with ODB

4.5 Prepared Queries

 prep_query pq (
 db.lookup_query<person> ("person-age-query", age_param));

 if (!pq)
 {
 unique_ptr<unsigned short> p (new unsigned short);
 age_param = p.get ();
 query q (query::age > query::_ref (*age_param));
 pq = db.prepare_query<person> ("person-age-query", q);
 db.cache_query (pq, p); // Assumes ownership of p.
 }

 *age_param = age; // Initialize the parameter.
 result r (pq.execute ());
 ...

 t.commit ();

 // Do some other work.
 //
 ...
}

As is evident from the above examples, when we use a prepared query cache, each transaction

that executes a query must also include code that prepares and caches this query if it hasn’t

already been done. If a prepared query is used in a single place in the application, then this is

normally not an issue since all the relevant code is kept in one place. However, if the same query

is used in several different places in the application, then we may end up duplicating the same

preparation and caching code, which makes it hard to maintain.

To resolve this issue ODB allows us to register a prepared query factory that will be called to

prepare and cache a query during the call to lookup_query(). To register a factory we use

the database::query_factory() function. In C++98/03 it has the following signature:

 void
 query_factory (const char* name,
 void (*factory) (const char* name, connection&));

While in C++11 it uses the std::function class template:

 void
 query_factory (const char* name,
 std::function<void (const char* name, connection&)>);

The first argument to the query_factory() function is the prepared query name that this

factory will be called to prepare and cache. An empty name is treated as a fallback wildcard

factory that is capable of preparing any query. The second argument is the factory function or, in

C++11, function object or lambda.

Revision 2.6, March 202584 C++ Object Persistence with ODB

4.5 Prepared Queries

The example fragment shows how we can use the prepared query factory:

struct params
{
 unsigned short age;
 string first;
};

static void
query_factory (const char* name, connection& c)
{
 unique_ptr<params> p (new params);
 query q (query::age > query::_ref (p->age) &&
 query::first == query::_ref (p->first));
 prep_query pq (c.prepare_query<person> (name, q));
 c.cache_query (pq, p);
}

db.query_factory ("person-age-name-query", &query_factory);

for (unsigned short age (90); age > 40; age -= 10)
{
 transaction t (db.begin ());

 params* p;
 prep_query pq (db.lookup_query<person> ("person-age-name-query", p));
 assert (pq);

 p->age = age;
 p->first = "John";
 result r (pq.execute ());
 ...

 t.commit ();
}

Instead of a static function we could have used a lambda:

db.query_factory (
 "person-age-name-query",
 [] (const char* name, connection& c)
 {
 unique_ptr<params> p (new params);
 query q (query::age > query::_ref (p->age) &&
 query::first == query::_ref (p->first));
 prep_query pq (c.prepare_query<person> (name, q));
 c.cache_query (pq, std::move (p));
 });

Note that the database::query_factory() function is not thread-safe and should be

called before starting any threads that may require this functionality. Normally, all the prepared

85Revision 2.6, March 2025 C++ Object Persistence with ODB

4.5 Prepared Queries

query factories are registered as part of the database instance creation.

Revision 2.6, March 202586 C++ Object Persistence with ODB

4.5 Prepared Queries

5 Containers

The ODB runtime library provides built-in persistence support for all the commonly used stan­

dard C++98/03 containers, namely, std::vector, std::list, std::deque, std::set,

std::multiset, std::map, and std::multimap as well as C++11 std::array,

std::forward_list, std::unordered_set, std::unordered_multiset,

std::unordered_map, and std::unordered_multimap. Plus, ODB profile libraries,

that are available for commonly used frameworks and libraries (such as Boost and Qt), provide

persistence support for containers found in these frameworks and libraries (Part III, "Profiles").

Both the ODB runtime library and profile libraries also provide a number of change-tracking

container equivalents which can be used to minimize the number of database operations neces­

sary to synchronize the container state with the database (Section 5.4, "Change-Tracking Contain­

ers"). It is also easy to persist custom container types as discussed later in Section 5.5, "Using

Custom Containers".

We don’t need to do anything special to declare a member of a container type in a persistent

class. For example:

#pragma db object
class person
{
 ...
private:
 std::vector<std::string> nicknames_;
 ...
};

The complete version of the above code fragment and the other code samples presented in this

chapter can be found in the container example in the odb-examples package.

A data member in a persistent class that is of a container type behaves like a value type. That is,

when an object is made persistent, the elements of the container are stored in the database. Simi­

larly, when a persistent object is loaded from the database, the contents of the container are auto­

matically loaded as well. A data member of a container type can also use a smart pointer, as

discussed in Section 7.3, "Pointers and NULL Value Semantics".

While an ordinary member is mapped to one or more columns in the object’s table, a member of a

container type is mapped to a separate table. The exact schema of such a table depends on the

kind of container. ODB defines the following container kinds: ordered, set, multiset, map, and

multimap. The container kinds and the contents of the tables to which they are mapped are

discussed in detail in the following sections.

87Revision 2.6, March 2025 C++ Object Persistence with ODB

5 Containers

Containers in ODB can contain simple value types (Section 7.1, "Simple Value Types"), compos­

ite value types (Section 7.2, "Composite Value Types"), and pointers to objects (Chapter 6,

"Relationships"). Containers of containers, either directly or indirectly via a composite value

type, are not allowed. A key in a map or multimap container can be a simple or composite value

type but not a pointer to an object. An index in the ordered container should be a simple integer

value type.

The value type in the ordered, set, and map containers as well as the key type in the map contain­

ers should be default-constructible. The default constructor in these types can be made private in

which case the odb::access class should be made a friend of the value or key type. For

example:

#pragma db value
class name
{
public:
 name (const std::string&, const std::string&);
 ...
private:
 friend class odb::access;
 name ();
 ...
};

#pragma db object
class person
{
 ...
private:
 std::vector<name> aliases_;
 ...
};

5.1 Ordered Containers

In ODB an ordered container is any container that maintains (explicitly or implicitly) an order of

its elements in the form of an integer index. Standard C++ containers that are ordered include

std::vector std::list, and std::deque as well as C++11 std::array and

std::forward_list. While elements in std::set are also kept in a specific order, this

order is not based on an integer index but rather on the relationship between elements. As a result,

std::set is not considered an ordered container for the purpose of persistence.

The database table for an ordered container consists of at least three columns. The first column

contains the object id of a persistent class instance of which the container is a member. The

second column contains the element index within a container. And the last column contains the

element value. If the object id or element value are composite, then, instead of a single column,

Revision 2.6, March 202588 C++ Object Persistence with ODB

5.1 Ordered Containers

they can occupy multiple columns. For an ordered container table the ODB compiler also defines

two indexes: one for the object id column(s) and the other for the index column. Refer to Section

14.7, "Index Definition Pragmas" for more information on how to customize these indexes.

Consider the following persistent object as an example:

#pragma db object
class person
{
 ...
private:
 #pragma db id auto
 unsigned long long id_;

 std::vector<std::string> nicknames_;
 ...
};

The resulting database table (called person_nicknames) will contain the object id column of

type unsigned long (called object_id), the index column of an integer type (called

index), and the value column of type std::string (called value).

A number of ODB pragmas allow us to customize the table name, column names, and native

database types of an ordered container both, on the per-container and per-member basis. For more

information on these pragmas, refer to Chapter 14, "ODB Pragma Language". The following

example shows some of the possible customizations:

#pragma db object
class person
{
 ...
private:
 #pragma db table("nicknames") \
 id_column("person_id") \
 index_type("SMALLINT UNSIGNED") \
 index_column("nickname_number") \
 value_type("VARCHAR(255)") \
 value_column("nickname")
 std::vector<std::string> nicknames_;
 ...
};

While the C++ container used in a persistent class may be ordered, sometimes we may wish to

store such a container in the database without the order information. In the example above, for

instance, the order of person’s nicknames is probably not important. To instruct the ODB

compiler to ignore the order in ordered containers we can use the db unordered pragma

(Section 14.3.9, "unordered", Section 14.4.19, "unordered"). For example:

89Revision 2.6, March 2025 C++ Object Persistence with ODB

5.1 Ordered Containers

#pragma db object
class person
{
 ...
private:
 #pragma db unordered
 std::vector<std::string> nicknames_;
 ...
};

The table for an ordered container that is marked unordered won’t have the index column and the

order in which elements are retrieved from the database may not be the same as the order in

which they were stored.

5.2 Set and Multiset Containers

In ODB set and multiset containers (referred to as just set containers) are associative containers

that contain elements based on some relationship between them. A set container may or may not

guarantee a particular order of the elements that it stores. Standard C++ containers that are

considered set containers for the purpose of persistence include std::set and std::multi­
set as well as C++11 std::unordered_set and std::unordered_multiset.

The database table for a set container consists of at least two columns. The first column contains

the object id of a persistent class instance of which the container is a member. And the second

column contains the element value. If the object id or element value are composite, then, instead

of a single column, they can occupy multiple columns. ODB compiler also defines an index on a

set container table for the object id column(s). Refer to Section 14.7, "Index Definition Pragmas"

for more information on how to customize this index.

Consider the following persistent object as an example:

#pragma db object
class person
{
 ...
private:
 #pragma db id auto
 unsigned long long id_;

 std::set<std::string> emails_;
 ...
};

The resulting database table (called person_emails) will contain the object id column of type

unsigned long (called object_id) and the value column of type std::string (called

value).

Revision 2.6, March 202590 C++ Object Persistence with ODB

5.2 Set and Multiset Containers

A number of ODB pragmas allow us to customize the table name, column names, and native

database types of a set container, both on the per-container and per-member basis. For more

information on these pragmas, refer to Chapter 14, "ODB Pragma Language". The following

example shows some of the possible customizations:

#pragma db object
class person
{
 ...
private:
 #pragma db table("emails") \
 id_column("person_id") \
 value_type("VARCHAR(255)") \
 value_column("email")
 std::set<std::string> emails_;
 ...
};

5.3 Map and Multimap Containers

In ODB map and multimap containers (referred to as just map containers) are associative contain­

ers that contain key-value elements based on some relationship between keys. A map container

may or may not guarantee a particular order of the elements that it stores. Standard C++ contain­

ers that are considered map containers for the purpose of persistence include std::map and

std::multimap as well as C++11 std::unordered_map and

std::unordered_multimap.

The database table for a map container consists of at least three columns. The first column

contains the object id of a persistent class instance of which the container is a member. The

second column contains the element key. And the last column contains the element value. If the

object id, element key, or element value are composite, then instead of a single column they can

occupy multiple columns. ODB compiler also defines an index on a map container table for the

object id column(s). Refer to Section 14.7, "Index Definition Pragmas" for more information on

how to customize this index.

Consider the following persistent object as an example:

#pragma db object
class person
{
 ...
private:
 #pragma db id auto
 unsigned long long id_;

91Revision 2.6, March 2025 C++ Object Persistence with ODB

5.3 Map and Multimap Containers

 std::map<unsigned short, float> age_weight_map_;
 ...
};

The resulting database table (called person_age_weight_map) will contain the object id

column of type unsigned long (called object_id), the key column of type unsigned
short (called key), and the value column of type float (called value).

A number of ODB pragmas allow us to customize the table name, column names, and native

database types of a map container, both on the per-container and per-member basis. For more

information on these pragmas, refer to Chapter 14, "ODB Pragma Language". The following

example shows some of the possible customizations:

#pragma db object
class person
{
 ...
private:
 #pragma db table("weight_map") \
 id_column("person_id") \
 key_type("INT UNSIGNED") \
 key_column("age") \
 value_type("DOUBLE") \
 value_column("weight")
 std::map<unsigned short, float> age_weight_map_;
 ...
};

5.4 Change-Tracking Containers

When a persistent object containing one of the standard containers is updated in the database,

ODB has no knowledge of which elements were inserted, erased, or modified. As a result, ODB

has no choice but to assume the whole container has changed and update the state of every single

element. This can result in a significant overhead if a container contains a large number of

elements and we only changed a small subset of them.

To eliminate this overhead, ODB provides a notion of change-tracking containers. A

change-tracking container, besides containing its elements, just like an ordinary container, also

includes the change state for each element. When it is time to update such a container in the

database, ODB can use this change information to perform a minimum number of database opera­

tions necessary to synchronize the container state with the database.

The current version of the ODB runtime library provides a change-tracking equivalent of

std::vector (Section 5.4.1, "Change-Tracking vector") with support for other standard

container equivalents planned for future releases. ODB profile libraries also provide

Revision 2.6, March 202592 C++ Object Persistence with ODB

5.4 Change-Tracking Containers

change-tracking equivalents for some containers found in the corresponding frameworks and

libraries (Part III, "Profiles").

A change-tracking container equivalent can normally be used as a drop-in replacement for an

ordinary container except for a few minor interface differences (discussed in the corresponding

sub-sections). In particular, we don’t need to do anything extra to effect change tracking. ODB

will automatically start, stop, and reset change tracking when necessary. The following example

illustrates this point using odb::vector as a replacement for std::vector.

#pragma db object
class person
{
 ...

 odb::vector<std::string> names;
};

person p; // No change tracking (not persistent).
p.names.push_back ("John Doe");

{
 transaction t (db.begin ());
 db.persist (p); // Start change tracking (persistent).
 t.commit ();
}

p.names.push_back ("Johnny Doo");

{
 transaction t (db.begin ());
 db.update (p); // One INSERT; reset change state.
 t.commit ();
}

p.names.modify (0) = "Doe, John"; // Instead of operator[].
p.names.pop_back ();

{
 transaction t (db.begin ());
 db.update (p); // One UPDATE, one DELETE; reset change state.
 t.commit ();
}

{
 transaction t (db.begin ());
 unique_ptr<person> p1 (db.load<person> (...)); // Start change tracking.
 p1->names.insert (p1->names.begin (), "Joe Do");
 db.update (*p1); // One UPDATE, one INSERT; reset change state.
 t.commit ();
}

93Revision 2.6, March 2025 C++ Object Persistence with ODB

5.4 Change-Tracking Containers

{
 transaction t (db.begin ());
 db.erase (p); // One DELETE; stop change tracking (not persistent).
 t.commit ();
}

One interesting aspect of change tracking is what happens when a transaction that contains an

update is later rolled back. In this case, while the change-tracking container has reset the change

state (after update), actual changes were not committed to the database. Change-tracking contain­

ers handle this case by automatically registering a rollback callback and then, if it is called,

marking the container as "completely changed". In this state, the container no longer tracks indi­

vidual element changes and, when updated, falls back to the complete state update, just like an

ordinary container. The following example illustrates this point:

person p;
p.names.push_back ("John Doe");

{
 transaction t (db.begin ());
 db.persist (p); // Start change tracking (persistent).
 t.commit ();
}

p.names.push_back ("Johnny Doo");

for (;;)
{
 try
 {
 transaction t (db.begin ());

 // First try: one INSERT.
 // Next try: one DELETE, two INSERTs.
 //
 db.update (p); // Reset change state.

 t.commit (); // If throws (rollback), mark as completely changed.
 break;
 }
 catch (const odb::recoverable&)
 {
 continue;
 }
}

For the interaction of change-tracking containers with change-updated object sections, refer to

Section 9.4, "Sections and Change-Tracking Containers". Note also that change-tracking contain­

ers cannot be accessed with by-value accessors (Section 14.4.5, "get/set/access") since in

Revision 2.6, March 202594 C++ Object Persistence with ODB

5.4 Change-Tracking Containers

certain situations such access may involve a modification of the container (for example, clearing

the change flag after update).

5.4.1 Change-Tracking vector

Class template odb::vector, defined in <odb/vector.hxx>, is a change-tracking equiva­

lent for std::vector. It is implemented in terms of std::vector and is implicit-convert­

ible to and implicit-constructible from const std::vector&. In particular, this means that

we can use odb::vector instance anywhere const std::vector& is expected. In addi­

tion, odb::vector constant iterator (const_iterator) is the same type as that of

std::vector.

odb::vector incurs 2-bit per element overhead in order to store the change state. It cannot be

stored unordered in the database (Section 14.4.19 "unordered") but can be used as an inverse

side of a relationship (6.2 "Bidirectional Relationships"). In this case, no change tracking is

performed since no state for such a container is stored in the database.

The number of database operations required to update the state of odb::vector corresponds

well to the complexity of std::vector functions. In particular, adding or removing an

element from the back of the vector (for example, with push_back() and pop_back()),

requires only a single database statement execution. In contrast, inserting or erasing an element

somewhere in the middle of the vector will require a database statement for every element that

follows it.

odb::vector replicates most of the std::vector interface as defined in both C++98/03

and C++11 standards. However, functions and operators that provide direct write access to the

elements had to be altered or disabled in order to support change tracking. Additional functions

used to interface with std::vector and to control the change tracking state were also added.

The following listing summarizes the differences between the odb::vector and

std::vector interfaces. Any std::vector function or operator not mentioned in this

listing has exactly the same signature and semantics in odb::vector. Functions and operators

that were disabled are shown as commented out and are followed by functions/operators that

replace them.

namespace odb
{
 template <class T, class A = std::allocator<T>>
 class vector
 {
 ...

 // Element access.
 //

 //reference operator[] (size_type);

95Revision 2.6, March 2025 C++ Object Persistence with ODB

5.4.1 Change-Tracking vector

 reference modify (size_type);

 //reference at (size_type);
 reference modify_at (size_type);

 //reference front ();
 reference modify_front ();

 //reference back ();
 reference modify_back ();

 //T* data () noexcept;
 T* modify_data () noexcept; // C++11 only.

 // Iterators.
 //
 using const_iterator = typename std::vector<T, A>::const_iterator;

 class iterator
 {
 ...

 // Element Access.
 //

 //reference operator* () const;
 const_reference operator* () const;
 reference modify () const;

 //pointer operator-> () const;
 const_pointer operator-> () const;

 //reference operator[] (difference_type);
 const_reference operator[] (difference_type);
 reference modify (difference_type) const;

 // Interfacing with std::vector::iterator.
 //
 typename std::vector<T, A>::iterator base () const;
 };

 // Return std::vector iterators. The begin() functions mark
 // all the elements as modified.
 //
 typename std::vector<T, A>::iterator mbegin ();
 typename std::vector<T, A>::iterator mend ();
 typename std::vector<T, A>::reverse_iterator mrbegin ();
 typename std::vector<T, A>::reverse_iterator mrend ();

 // Interfacing with std::vector.
 //

Revision 2.6, March 202596 C++ Object Persistence with ODB

5.4.1 Change-Tracking vector

 vector (const std::vector<T, A>&);
 vector (std::vector<T, A>&&); // C++11 only.

 vector& operator= (const std::vector<T, A>&);
 vector& operator= (std::vector<T, A>&&); // C++11 only.

 operator const std::vector<T, A>& () const;
 std::vector<T, A>& base ();
 const std::vector<T, A>& base ();

 // Change tracking.
 //
 bool _tracking () const;
 void _start () const;
 void _stop () const;
 void _arm (transaction&) const;
 };
}

The following example highlights some of the differences between the two interfaces.

std::vector versions are commented out.

#include <vector>
#include <odb/vector.hxx>

void f (const std::vector<int>&);

odb::vector<int> v ({1, 2, 3});

f (v); // Ok, implicit conversion.

if (v[1] == 2) // Ok, const access.
 //v[1]++;
 v.modify (1)++;

//v.back () = 4;
v.modify_back () = 4;

for (auto i (v.begin ()); i != v.end (); ++i)
{
 if (*i != 0) // Ok, const access.
 //*i += 10;
 i.modify () += 10;
}

std::sort (v.mbegin (), v.mend ());

Note also the subtle difference between copy/move construction and copy/move assignment of

odb::vector instances. While copy/move constructor will copy/move both the elements as

well as their change state, in contrast, assignment is tracked as any other change to the vector

97Revision 2.6, March 2025 C++ Object Persistence with ODB

5.4.1 Change-Tracking vector

content.

5.5 Using Custom Containers

While the ODB runtime and profile libraries provide support for a wide range of containers, it is

also easy to persist custom container types or make a change-tracking version out of one.

To achieve this you will need to implement the container_traits class template specializa­

tion for your container. First, determine the container kind (ordered, set, multiset, map, or

multimap) for your container type. Then use a specialization for one of the standard C++ contain­

ers found in the common ODB runtime library (libodb) as a base for your own implementation.

Once the container traits specialization is ready for your container, you will need to include it into

the ODB compilation process using the --odb-epilogue option and into the generated header

files with the --hxx-prologue option. As an example, suppose we have a hash table

container for which we have the traits specialization implemented in the

hashtable-traits.hxx file. Then, we can create an ODB compiler options file for this

container and save it to hashtable.options:

Options file for the hash table container.
#
--odb-epilogue ’#include "hashtable-traits.hxx"’
--hxx-prologue ’#include "hashtable-traits.hxx"’

Now, whenever we compile a header file that uses the hashtable container, we can specify the

following command line option to make sure it is recognized by the ODB compiler as a container

and the traits file is included in the generated code:

--options-file hashtable.options

Revision 2.6, March 202598 C++ Object Persistence with ODB

5.5 Using Custom Containers

6 Relationships

Relationships between persistent objects are expressed with pointers or containers of pointers.

The ODB runtime library provides built-in support for std::shared_ptr/std::weak_ptr
(C++11), std::unique_ptr (C++11), std::auto_ptr (C++98/03 only), and raw point­

ers. Plus, ODB profile libraries, that are available for commonly used frameworks and libraries

(such as Boost and Qt), provide support for smart pointers found in these frameworks and

libraries (Part III, "Profiles"). It is also easy to add support for a custom smart pointer as

discussed later in Section 6.5, "Using Custom Smart Pointers". Any supported smart pointer can

be used in a data member as long as it can be explicitly constructed from the canonical object

pointer (Section 3.3, "Object and View Pointers"). For example, we can use weak_ptr if the

object pointer is shared_ptr.

When an object containing a pointer to another object is loaded, the pointed-to object is loaded as

well. In some situations this eager loading of the relationships is undesirable since it can lead to a

large number of otherwise unused objects being instantiated from the database. To support finer

control over relationships loading, the ODB runtime and profile libraries provide the so-called

lazy versions of the supported pointers. An object pointed-to by a lazy pointer is not loaded auto­

matically when the containing object is loaded. Instead, we have to explicitly request the instanti­

ation of the pointed-to object. Lazy pointers are discussed in detail in Section 6.4, "Lazy Point­

ers".

As a simple example, consider the following employee-employer relationship. Code examples

presented in this chapter will use the C++11 shared_ptr and weak_ptr smart pointers from

the std namespace.

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string name_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long long id_;

 std::string first_name_;

99Revision 2.6, March 2025 C++ Object Persistence with ODB

6 Relationships

 std::string last_name_;

 shared_ptr<employer> employer_;
};

By default, an object pointer can be NULL. To specify that a pointer always points to a valid

object we can use the not_null pragma (Section 14.4.6, "null/not_null") for single object

pointers and the value_not_null pragma (Section 14.4.28,

"value_null/value_not_null") for containers of object pointers. For example:

#pragma db object
class employee
{
 ...

 #pragma db not_null
 shared_ptr<employer> current_employer_;

 #pragma db value_not_null
 std::vector<shared_ptr<employer>> previous_employers_;
};

In this case, if we call either persist() or update() database function on the employee
object and the current_employer_ pointer or one of the pointers stored in the previ­
ous_employers_ container is NULL, then the odb::null_pointer exception will be

thrown.

We don’t need to do anything special to establish or navigate a relationship between two persis­

tent objects, as shown in the following code fragment:

// Create an employer and a few employees.
//
unsigned long long john_id, jane_id;
{
 shared_ptr<employer> er (new employer ("Example Inc"));
 shared_ptr<employee> john (new employee ("John", "Doe"));
 shared_ptr<employee> jane (new employee ("Jane", "Doe"));

 john->employer_ = er;
 jane->employer_ = er;

 transaction t (db.begin ());

 db.persist (er);
 john_id = db.persist (john);
 jane_id = db.persist (jane);

 t.commit ();
}

Revision 2.6, March 2025100 C++ Object Persistence with ODB

6 Relationships

// Load a few employee objects and print their employer.
//
{
 session s;
 transaction t (db.begin ());

 shared_ptr<employee> john (db.load<employee> (john_id));
 shared_ptr<employee> jane (db.load<employee> (jane_id));

 cout << john->employer_->name_ << endl;
 cout << jane->employer_->name_ << endl;

 t.commit ();
}

The only notable line in the above code is the creation of a session before the second transaction

starts. As discussed in Chapter 11, "Session", a session acts as a cache of persistent objects. By

creating a session before loading the employee objects we make sure that their employer_

pointers point to the same employer object. Without a session, each employee would have

ended up pointing to its own, private instance of the Example Inc employer.

As a general guideline, you should use a session when loading objects that have pointers to other

persistent objects. A session makes sure that for a given object id, a single instance is shared

among all other objects that relate to it.

We can also use data members from pointed-to objects in database queries (Chapter 4, "Querying

the Database"). For each pointer in a persistent class, the query class defines a smart pointer-like

member that contains members corresponding to the data members in the pointed-to object. We

can then use the access via a pointer syntax (->) to refer to data members in pointed-to objects.

For example, the query class for the employee object contains the employer member (its

name is derived from the employer_ pointer) which in turn contains the name member (its

name is derived from the employer::name_ data member of the pointed-to object). As a

result, we can use the query::employer->name expression while querying the database for

the employee objects. For example, the following transaction finds all the employees of

Example Inc that have the Doe last name:

using query = odb::query<employee>;
using result = odb::result<employee>;

session s;
transaction t (db.begin ());

result r (db.query<employee> (
 query::employer->name == "Example Inc" && query::last == "Doe"));

101Revision 2.6, March 2025 C++ Object Persistence with ODB

6 Relationships

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cout << i->first_ << " " << i->last_ << endl;

t.commit ();

A query class member corresponding to a non-inverse (Section 6.2, "Bidirectional Relation­

ships") object pointer can also be used as a normal member that has the id type of the pointed-to

object. For example, the following query locates all the employee objects that don’t have an

associated employer object:

result r (db.query<employee> (query::employer.is_null ()));

An important concept to keep in mind when working with object relationships is the indepen­

dence of persistent objects. In particular, when an object containing a pointer to another object is

made persistent or is updated, the pointed-to object is not automatically persisted or updated.

Rather, only a reference to the object (in the form of the object id) is stored for the pointed-to

object in the database. The pointed-to object itself is a separate entity and should be made persis­

tent or updated independently. By default, the same principle also applies to erasing pointed-to

objects. That is, we have to make sure all the pointing objects are updated accordingly. However,

in the case of erase, we can specify an alternative on-delete semantic as discussed in Section

14.4.15, "on_delete".

When persisting or updating an object containing a pointer to another object, the pointed-to object

must have a valid object id. This, however, may not always be easy to achieve in complex rela­

tionships that involve objects with automatically assigned identifiers. In such cases it may be

necessary to first persist an object with a pointer set to NULL and then, once the pointed-to object

is made persistent and its identifier assigned, set the pointer to the correct value and update the

object in the database.

Persistent object relationships can be divided into two groups: unidirectional and bidirectional.

Each group in turn contains several configurations that vary depending on the cardinality of the

sides of the relationship. All possible unidirectional and bidirectional configurations are discussed

in the following sections.

6.1 Unidirectional Relationships

In unidirectional relationships we are only interested in navigating from object to object in one

direction. Because there is no interest in navigating in the opposite direction, the cardinality of the

other end of the relationship is unimportant. As a result, there are only two possible unidirectional

relationships: to-one and to-many. Each of these relationships is described in the following

sections. For sample code that shows how to work with these relationships, refer to the rela­
tionship example in the odb-examples package.

Revision 2.6, March 2025102 C++ Object Persistence with ODB

6.1 Unidirectional Relationships

6.1.1 To-One Relationships

An example of a unidirectional to-one relationship is the employee-employer relationship (an

employee has one employer). The following persistent C++ classes model this relationship:

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string name_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db not_null
 shared_ptr<employer> employer_;
};

The corresponding database tables look like this:

CREATE TABLE employer (
 name VARCHAR (128) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 employer VARCHAR (128) NOT NULL REFERENCES employer (name));

6.1.2 To-Many Relationships

An example of a unidirectional to-many relationship is the employee-project relationship (an

employee can be involved in multiple projects). The following persistent C++ classes model this

relationship:

#pragma db object
class project
{
 ...

 #pragma db id
 std::string name_;
};

103Revision 2.6, March 2025 C++ Object Persistence with ODB

6.1.1 To-One Relationships

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db value_not_null unordered
 std::vector<shared_ptr<project>> projects_;
};

The corresponding database tables look like this:

CREATE TABLE project (
 name VARCHAR (128) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
 object_id BIGINT UNSIGNED NOT NULL,
 value VARCHAR (128) NOT NULL REFERENCES project (name));

To obtain a more canonical database schema, the names of tables and columns above can be

customized using ODB pragmas (Chapter 14, "ODB Pragma Language"). For example:

#pragma db object
class employee
{
 ...

 #pragma db value_not_null unordered \
 id_column("employee_id") value_column("project_name")
 std::vector<shared_ptr<project>> projects_;
};

The resulting employee_projects table would then look like this:

CREATE TABLE employee_projects (
 employee_id BIGINT UNSIGNED NOT NULL,
 project_name VARCHAR (128) NOT NULL REFERENCES project (name));

Revision 2.6, March 2025104 C++ Object Persistence with ODB

6.1.2 To-Many Relationships

6.2 Bidirectional Relationships

In bidirectional relationships we are interested in navigating from object to object in both direc­

tions. As a result, each object class in a relationship contains a pointer to the other object. If smart

pointers are used, then a weak pointer should be used as one of the pointers to avoid ownership

cycles. For example:

class employee;

#pragma db object
class position
{
 ...

 #pragma db id
 unsigned long long id_;

 weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db not_null
 shared_ptr<position> position_;
};

Note that when we establish a bidirectional relationship, we have to set both pointers consistently.

One way to make sure that a relationship is always in a consistent state is to provide a single

function that updates both pointers at the same time. For example:

#pragma db object
class position: public enable_shared_from_this<position>
{
 ...

 void
 fill (shared_ptr<employee> e)
 {
 employee_ = e;
 e->positions_ = shared_from_this ();
 }

private:

105Revision 2.6, March 2025 C++ Object Persistence with ODB

6.2 Bidirectional Relationships

 weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

private:
 friend class position;

 #pragma db not_null
 shared_ptr<position> position_;
};

At the beginning of this chapter we examined how to use a session to make sure a single object is

shared among all other objects pointing to it. With bidirectional relationships involving weak

pointers the use of a session becomes even more crucial. Consider the following transaction that

tries to load the position object from the above example without using a session:

transaction t (db.begin ())
shared_ptr<position> p (db.load<position> (1));
...
t.commit ();

When we load the position object, the employee object, which it points to, is also loaded.

While employee is initially stored as shared_ptr, it is then assigned to the employee_
member which is weak_ptr. Once the assignment is complete, the shared pointer goes out of

scope and the only pointer that points to the newly loaded employee object is the employee_
weak pointer. And that means the employee object is deleted immediately after being loaded.

To help avoid such pathological situations ODB detects cases where a newly loaded object will

immediately be deleted and throws the odb::session_required exception.

As the exception name suggests, the easiest way to resolve this problem is to use a session:

session s;
transaction t (db.begin ())
shared_ptr<position> p (db.load<position> (1));
...
t.commit ();

In our example, the session will maintain a shared pointer to the loaded employee object

preventing its immediate deletion. Another way to resolve this problem is to avoid immediate

loading of the pointed-to objects using lazy weak pointers. Lazy pointers are discussed in Section

6.4, "Lazy Pointers" later in this chapter.

Revision 2.6, March 2025106 C++ Object Persistence with ODB

6.2 Bidirectional Relationships

Above, to model a bidirectional relationship in persistent classes, we used two pointers, one in

each object. While this is a natural representation in C++, it does not translate to a canonical rela­

tional model. Consider the database schema generated for the above two classes:

CREATE TABLE position (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

While this database schema is valid, it is unconventional. We have a reference from a row in the

position table to a row in the employee table. We also have a reference from this same row

in the employee table back to the row in the position table. From the relational point of

view, one of these references is redundant since in SQL we can easily navigate in both directions

using just one of these references.

To eliminate redundant database schema references we can use the inverse pragma (Section

14.4.14, "inverse") which tells the ODB compiler that a pointer is the inverse side of a bidirec­

tional relationship. Either side of a relationship can be made inverse. For example:

#pragma db object
class position
{
 ...

 #pragma db inverse(position_)
 weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

 #pragma db not_null
 shared_ptr<position> position_;
};

The resulting database schema looks like this:

CREATE TABLE position (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

107Revision 2.6, March 2025 C++ Object Persistence with ODB

6.2 Bidirectional Relationships

As you can see, an inverse member does not have a corresponding column (or table, in case of an

inverse container of pointers) and, from the point of view of database operations, is effectively

read-only. The only way to change a bidirectional relationship with an inverse side is to set its

direct (non-inverse) pointer. Also note that an ordered container (Section 5.1, "Ordered Contain­

ers") of pointers that is an inverse side of a bidirectional relationship is always treated as

unordered (Section 14.4.19, "unordered") because the contents of such a container are implic­

itly built from the direct side of the relationship which does not contain the element order (index).

There are three distinct bidirectional relationships that we will cover in the following sections:

one-to-one, one-to-many, and many-to-many. We will only talk about bidirectional relationships

with inverse sides since they result in canonical database schemas. For sample code that shows

how to work with these relationships, refer to the inverse example in the odb-examples

package.

6.2.1 One-to-One Relationships

An example of a bidirectional one-to-one relationship is the presented above employee-position

relationship (an employee fills one position and a position is filled by one employee). The follow­

ing persistent C++ classes model this relationship:

class employee;

#pragma db object
class position
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db inverse(position_)
 weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db not_null
 shared_ptr<position> position_;
};

Revision 2.6, March 2025108 C++ Object Persistence with ODB

6.2.1 One-to-One Relationships

The corresponding database tables look like this:

CREATE TABLE position (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 position BIGINT UNSIGNED NOT NULL REFERENCES position (id));

If instead the other side of this relationship is made inverse, then the database tables will change

as follows:

CREATE TABLE position (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.2.2 One-to-Many Relationships

An example of a bidirectional one-to-many relationship is the employer-employee relationship

(an employer has multiple employees and an employee is employed by one employer). The

following persistent C++ classes model this relationship:

class employee;

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string name_;

 #pragma db value_not_null inverse(employer_)
 std::vector<weak_ptr<employee>> employees_
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db not_null
 shared_ptr<employer> employer_;
};

109Revision 2.6, March 2025 C++ Object Persistence with ODB

6.2.2 One-to-Many Relationships

The corresponding database tables differ significantly depending on which side of the relation­

ship is made inverse. If the one side (employer) is inverse as in the code above, then the result­

ing database schema looks like this:

CREATE TABLE employer (
 name VARCHAR (128) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 employer VARCHAR (128) NOT NULL REFERENCES employer (name));

If instead the many side (employee) of this relationship is made inverse, then the database

tables will change as follows:

CREATE TABLE employer (
 name VARCHAR (128) NOT NULL PRIMARY KEY);

CREATE TABLE employer_employees (
 object_id VARCHAR (128) NOT NULL REFERENCES employer (name),
 value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.2.3 Many-to-Many Relationships

An example of a bidirectional many-to-many relationship is the employee-project relationship (an

employee can work on multiple projects and a project can have multiple participating employ­

ees). The following persistent C++ classes model this relationship:

class employee;

#pragma db object
class project
{
 ...

 #pragma db id
 std::string name_;

 #pragma db value_not_null inverse(projects_)
 std::vector<weak_ptr<employee>> employees_;
};

#pragma db object
class employee
{
 ...

Revision 2.6, March 2025110 C++ Object Persistence with ODB

6.2.3 Many-to-Many Relationships

 #pragma db id
 unsigned long long id_;

 #pragma db value_not_null unordered
 std::vector<shared_ptr<project>> projects_;
};

The corresponding database tables look like this:

CREATE TABLE project (
 name VARCHAR (128) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
 object_id BIGINT UNSIGNED NOT NULL REFERENCES employee (id),
 value VARCHAR (128) NOT NULL REFERENCES project (name));

If instead the other side of this relationship is made inverse, then the database tables will change

as follows:

CREATE TABLE project (
 name VARCHAR (128) NOT NULL PRIMARY KEY);

CREATE TABLE project_employees (
 object_id VARCHAR (128) NOT NULL REFERENCES project (name),
 value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

6.3 Circular Relationships

A relationship between two persistent classes is circular if each of them references the other.

Bidirectional relationships are always circular. A unidirectional relationship combined with inher­

itance (Chapter 8, "Inheritance") can also be circular. For example, the employee class could

derive from person which, in turn, could contain a pointer to employee.

We don’t need to do anything extra if persistent classes with circular dependencies are defined in

the same header file. Specifically, ODB will make sure that the database tables and foreign key

constraints are created in the correct order. As a result, unless you have good reasons not to, it is

recommended that you keep persistent classes with circular dependencies in the same header file.

If you have to keep such classes in separate header files, then there are two extra steps that you

may need to take in order to use these classes with ODB. Consider again the example from

Section 6.2.1, "One-to-One Relationships" but this time with the classes defined in separate

111Revision 2.6, March 2025 C++ Object Persistence with ODB

6.3 Circular Relationships

headers:

// position.hxx
//
class employee;

#pragma db object
class position
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db inverse(position_)
 weak_ptr<employee> employee_;
};

// employee.hxx
//
#include "position.hxx"

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db not_null
 shared_ptr<position> position_;
};

Note that the position.hxx header contains only the forward declaration for employee.

While this is sufficient to define a valid, from the C++ point of view, position class, the ODB

compiler needs to "see" the definitions of the pointed-to persistent classes. There are several ways

we can fulfil this requirement. The easiest is to simply include employee.hxx at the end of

position.hxx:

// position.hxx
//
class employee;

#pragma db object
class position
{

Revision 2.6, March 2025112 C++ Object Persistence with ODB

6.3 Circular Relationships

 ...
};

#include "employee.hxx"

We can also limit this inclusion only to the time when position.hxx is compiled with the

ODB compiler:

// position.hxx
//

...

#ifdef ODB_COMPILER
include "employee.hxx"
#endif

Finally, if we don’t want to modify position.hxx, then we can add employee.hxx to the

ODB compilation process with the --odb-epilogue option. For example:

odb ... --odb-epilogue "#include \"employee.hxx\"" position.hxx

Note also that in this example we didn’t have to do anything extra for employee.hxx because

it already includes position.hxx. However, if instead it relied only on the forward declara­

tion of the position class, then we would have to handle it in the same way as posi­
tion.hxx.

The other difficulty with separately defined classes involving circular relationships has to do with

the correct order of foreign key constraint creation in the generated database schema. In the above

example, if we generate the database schema as standalone SQL files, then we will end up with

two such files: position.sql and employee.sql. If we try to execute employee.sql
first, then we will get an error indicating that the table corresponding to the position class and

referenced by the foreign key constraint corresponding to the position_ pointer does not yet

exist.

Note that there is no such problem if the database schema is embedded in the generated C++ code

instead of being produced as standalone SQL files. In this case, the ODB compiler is able to

ensure the correct creation order even if the classes are defined in separate header files.

In certain cases, for example, a bidirectional relationship with an inverse side, this problem can

be resolved by executing the database schema creation files in the correct order. In our example,

this would be position.sql first and employee.sql second. However, this approach

doesn’t scale beyond simple object models.

113Revision 2.6, March 2025 C++ Object Persistence with ODB

6.3 Circular Relationships

A more robust solution to this problem is to generate the database schema for all the persistent

classes into a single SQL file. This way, the ODB compiler can again ensure the correct creation

order of tables and foreign keys. To instruct the ODB compiler to produce a combined schema

file for several headers we can use the --generate-schema-only and --at-once
options. For example:

odb ... --generate-schema-only --at-once --input-name company \
position.hxx employee.hxx

The result of the above command is a single company.sql file (the name is derived from the

--input-name value) that contains the database creation code for both position and

employee classes.

6.4 Lazy Pointers

Consider again the bidirectional, one-to-many employer-employee relationship that was

presented earlier in this chapter:

class employee;

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string name_;

 #pragma db value_not_null inverse(employer_)
 std::vector<weak_ptr<employee>> employees_;
};

#pragma db object
class employee
{
 ...

 #pragma db id
 unsigned long long id_;

 #pragma db not_null
 shared_ptr<employer> employer_;
};

Consider also the following transaction which obtains the employer name given the employee id:

Revision 2.6, March 2025114 C++ Object Persistence with ODB

6.4 Lazy Pointers

unsigned long long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr<employee> e (db.load<employee> (id));
name = e->employer_->name_;

t.commit ();

While this transaction looks very simple, it actually does a lot more than what meets the eye and

is necessary. Consider what happens when we load the employee object: the employer_
pointer is also automatically loaded which means the employer object corresponding to this

employee is also loaded. But the employer object in turn contains the list of pointers to all the

employees, which are also loaded. As a result, when object relationships are involved, a simple

transaction like the above can load many more objects than is necessary.

To overcome this problem ODB offers finer grained control over the relationship loading in the

form of lazy pointers. A lazy pointer does not automatically load the pointed-to object when the

containing object is loaded. Instead, we have to explicitly load the pointed-to object if and when

we need to access it.

The ODB runtime library provides lazy counterparts for all the supported pointers, namely:

odb::lazy_shared_ptr/lazy_weak_ptr for C++11 std::shared_ptr/weak_ptr,

odb::lazy_unique_ptr for C++11 std::unique_ptr, odb::lazy_auto_ptr for

C++98/03 std::auto_ptr, and odb::lazy_ptr for raw pointers. All these lazy pointers

are defined in the <odb/lazy-ptr.hxx> header. The ODB profile libraries also provide lazy

pointer implementations for smart pointers from popular frameworks and libraries (Part III,

"Profiles").

While we will discuss the interface of lazy pointers in more detail shortly, the most commonly

used extra function provided by these pointers is load(). This function loads the pointed-to

object if it hasn’t already been loaded. After the call to this function, the lazy pointer can be used

in the the same way as its eager counterpart. The load() function also returns the eager pointer,

in case you need to pass it around. For a lazy weak pointer, the load() function also locks the

pointer.

The following example shows how we can change our employer-employee relationship to use

lazy pointers. Here we choose to use lazy pointers for both sides of the relationship.

class employee;

#pragma db object
class employer
{

115Revision 2.6, March 2025 C++ Object Persistence with ODB

6.4 Lazy Pointers

 ...

 #pragma db value_not_null inverse(employer_)
 std::vector<lazy_weak_ptr<employee>> employees_;
};

#pragma db object
class employee
{
 ...

 #pragma db not_null
 lazy_shared_ptr<employer> employer_;
};

And the transaction is changed like this:

unsigned long long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr<employee> e (db.load<employee> (id));
e->employer_.load ();
name = e->employer_->name_;

t.commit ();

As a general guideline we recommend that you make at least one side of a bidirectional relation­

ship lazy, especially for relationships with a many side.

A lazy pointer implementation mimics the interface of its eager counterpart which can be used

once the pointer is loaded. It also adds a number of additional functions that are specific to the

lazy loading functionality. Overall, the interface of a lazy pointer follows this general outline:

template <class T>
class lazy_ptr
{
public:
 //
 // The eager pointer interface.
 //

 // Initialization/assignment from an eager pointer to a
 // transient object.
 //
public:
 template <class Y> lazy_ptr (const eager_ptr<Y>&);
 template <class Y> lazy_ptr& operator= (const eager_ptr<Y>&);

Revision 2.6, March 2025116 C++ Object Persistence with ODB

6.4 Lazy Pointers

 // Lazy loading interface.
 //
public:
 // NULL loaded()
 //
 // true true NULL pointer to transient object
 // false true valid pointer to persistent object
 // true false unloaded pointer to persistent object
 // false false valid pointer to transient object
 //
 bool loaded () const;

 eager_ptr<T> load () const;

 // Unload the pointer. For transient objects this function is
 // equivalent to reset().
 //
 void unload () const;

 // Get the underlying eager pointer. If this is an unloaded pointer
 // to a persistent object, then the returned pointer will be NULL.
 //
 eager_ptr<T> get_eager () const;

 // Initialization with a persistent loaded object.
 //
 template <class Y> lazy_ptr (database&, Y*);
 template <class Y> lazy_ptr (database&, const eager_ptr<Y>&);

 template <class Y> void reset (database&, Y*);
 template <class Y> void reset (database&, const eager_ptr<Y>&);

 // Initialization with a persistent unloaded object.
 //
 template <class ID> lazy_ptr (database&, const ID&);

 template <class ID> void reset (database&, const ID&);

 // Query object id and database of a persistent object.
 //
 template <class O /* = T */>
 // C++11: template <class O = T>
 object_traits<O>::id_type object_id () const;

 odb::database& database () const;
};

117Revision 2.6, March 2025 C++ Object Persistence with ODB

6.4 Lazy Pointers

Note that to initialize a lazy pointer to a persistent object from its eager pointer one must use the

constructor or reset() function with the database as its first argument. The database is required

to support comparison of unloaded lazy pointers to persistent objects.

In a lazy weak pointer interface, the load() function returns the strong (shared) eager pointer.

The following transaction demonstrates the use of a lazy weak pointer based on the employer
and employee classes presented earlier.

using employees = std::vector<lazy_weak_ptr<employee>>;

session s;
transaction t (db.begin ());

shared_ptr<employer> er (db.load<employer> ("Example Inc"));
employees& es (er->employees ());

for (employees::iterator i (es.begin ()); i != es.end (); ++i)
{
 // We are only interested in employees with object id less than
 // 100.
 //
 lazy_weak_ptr<employee>& lwp (*i);

 if (lwp.object_id<employee> () < 100)
 // C++11: if (lwp.object_id () < 100)
 {
 shared_ptr<employee> e (lwp.load ()); // Load and lock.
 cout << e->first_ << " " << e->last_ << endl;
 }
}

t.commit ();

Notice that inside the for-loop we use a reference to the lazy weak pointer instead of making a

copy. This is not merely to avoid a copy. When a lazy pointer is loaded, all other lazy pointers

that point to the same object do not automatically become loaded (though an attempt to load such

copies will result in them pointing to the same object, provided the same session is still in effect).

By using a reference in the above transaction we make sure that we load the pointer that is

contained in the employer object. This way, if we later need to re-examine this employee
object, the pointer will already be loaded.

As another example, suppose we want to add an employee to Example Inc. The straightforward

implementation of this transaction is presented below:

session s;
transaction t (db.begin ());

shared_ptr<employer> er (db.load<employer> ("Example Inc"));

Revision 2.6, March 2025118 C++ Object Persistence with ODB

6.4 Lazy Pointers

shared_ptr<employee> e (new employee ("John", "Doe"));

e->employer_ = er;
er->employees ().push_back (e);

db.persist (e);
t.commit ();

Notice here that we didn’t have to update the employer object in the database since the employ­
ees_ list of pointers is an inverse side of a bidirectional relationship and is effectively read-only,

from the persistence point of view.

A faster implementation of this transaction, that avoids loading the employer object, relies on the

ability to initialize an unloaded lazy pointer with the database where the object is stored as well

as its identifier:

lazy_shared_ptr<employer> er (db, std::string ("Example Inc"));
shared_ptr<employee> e (new employee ("John", "Doe"));

e->employer_ = er;

session s;
transaction t (db.begin ());

db.persist (e);

t.commit ();

For the interaction of lazy pointers with lazy-loaded object sections, refer to Section 9.3,

"Sections and Lazy Pointers".

6.5 Using Custom Smart Pointers

While the ODB runtime and profile libraries provide support for the majority of widely-used

pointers, it is also easy to add support for a custom smart pointer.

To achieve this you will need to implement the pointer_traits class template specialization

for your pointer. The first step is to determine the pointer kind since the interface of the

pointer_traits specialization varies depending on the pointer kind. The supported pointer

kinds are: raw (raw pointer or equivalent, that is, unmanaged), unique (smart pointer that doesn’t

support sharing), shared (smart pointer that supports sharing), and weak (weak counterpart of the

shared pointer). Any of these pointers can be lazy, which also affects the interface of the

pointer_traits specialization.

119Revision 2.6, March 2025 C++ Object Persistence with ODB

6.5 Using Custom Smart Pointers

Once you have determined the pointer kind for your smart pointer, use a specialization for one of

the standard pointers found in the common ODB runtime library (libodb) as a base for your

own implementation.

Once the pointer traits specialization is ready, you will need to include it into the ODB compila­

tion process using the --odb-epilogue option and into the generated header files with the

--hxx-prologue option. As an example, suppose we have the smart_ptr smart pointer for

which we have the traits specialization implemented in the smart-ptr-traits.hxx file.

Then, we can create an ODB compiler options file for this pointer and save it to

smart-ptr.options:

Options file for smart_ptr.
#
--odb-epilogue ’#include "smart-ptr-traits.hxx"’
--hxx-prologue ’#include "smart-ptr-traits.hxx"’

Now, whenever we compile a header file that uses smart_ptr, we can specify the following

command line option to make sure it is recognized by the ODB compiler as a smart pointer and

the traits file is included in the generated code:

--options-file smart-ptr.options

It is also possible to implement a lazy counterpart for your smart pointer. The ODB runtime

library provides a class template that encapsulates the object id management and loading func­

tionality that is needed to implement a lazy pointer. All you need to do is wrap it with an interface

that mimics your smart pointer. Using one of the existing lazy pointer implementations (either

from the ODB runtime library or one of the profile libraries) as a base for your implementation is

the easiest way to get started.

Revision 2.6, March 2025120 C++ Object Persistence with ODB

6.5 Using Custom Smart Pointers

7 Value Types

In Section 3.1, "Concepts and Terminology" we have already discussed the notion of values and

value types as well as the distinction between simple and composite values. This chapter covers

simple and composite value types in more detail.

7.1 Simple Value Types

A simple value type is a fundamental C++ type or a class type that is mapped to a single database

column. For each supported database system the ODB compiler provides a default mapping to

suitable database types for most fundamental C++ types, such as int or float as well as some

class types, such as std::string. For more information about the default mapping for each

database system refer to Part II, Database Systems. We can also provide a custom mapping for

these or our own value types using the db type pragma (Section 14.3.1, "type").

7.2 Composite Value Types

A composite value type is a class or struct type that is mapped to more than one database

column. To declare a composite value type we use the db value pragma, for example:

#pragma db value
class basic_name
{
 ...

 std::string first_;
 std::string last_;
};

The complete version of the above code fragment and the other code samples presented in this

section can be found in the composite example in the odb-examples package.

A composite value type does not have to define a default constructor, unless it is used as an

element of a container. In this case the default constructor can be made private provided we also

make the odb::access class, defined in the <odb/core.hxx> header, a friend of this value

type. For example:

#include <odb/core.hxx>

#pragma db value
class basic_name
{
public:
 basic_name (const std::string& first, const std::string& last);

121Revision 2.6, March 2025 C++ Object Persistence with ODB

7 Value Types

 ...

private:
 friend class odb::access;

 basic_name () {} // Needed for storing basic_name in containers.

 ...
};

The ODB compiler also needs access to the non-transient (Section 14.4.11, "transient") data

members of a composite value type. It uses the same mechanisms as for persistent classes which

are discussed in Section 3.2, "Declaring Persistent Objects and Values".

The members of a composite value can be other value types (either simple or composite),

containers (Chapter 5, "Containers"), and pointers to objects (Chapter 6, "Relationships"). Simi­

larly, a composite value type can be used in object members, as an element of a container, and as

a base for another composite value type. In particular, composite value types can be used as

element types in set containers (Section 5.2, "Set and Multiset Containers") and as key types in

map containers (Section 5.3, "Map and Multimap Containers"). A composite value type that is

used as an element of a container cannot contain other containers since containers of containers

are not allowed. The following example illustrates some of the possible use cases:

#pragma db value
class basic_name
{
 ...

 std::string first_;
 std::string last_;
};

using basic_names = std::vector<basic_name>;

#pragma db value
class name_extras
{
 ...

 std::string nickname_;
 basic_names aliases_;
};

#pragma db value
class name: public basic_name
{
 ...

 std::string title_;

Revision 2.6, March 2025122 C++ Object Persistence with ODB

7.2 Composite Value Types

 name_extras extras_;
};

#pragma db object
class person
{
 ...

 name name_;
};

A composite value type can be defined inside a persistent class, view, or another composite value

and even made private, provided we make odb::access a friend of the containing class, for

example:

#pragma db object
class person
{
 ...

 #pragma db value
 class name
 {
 ...

 std::string first_;
 std::string last_;
 };

 name name_;
};

A composite value type can also be defined as an instantiation of a C++ class template, for

example:

template <typename T>
struct point
{
 T x;
 T y;
 T z;
};

using int_point = point<int>;
#pragma db value(int_point)

#pragma db object
class object
{

123Revision 2.6, March 2025 C++ Object Persistence with ODB

7.2 Composite Value Types

 ...

 int_point center_;
};

Note that the database support code for such a composite value type is generated when compiling

the header containing the db value pragma and not the header containing the template defini­

tion or the using alias. This allows us to use templates defined in other files, such as

std::pair defined in the utility standard header file:

#include <utility> // std::pair

using phone_numbers = std::pair<std::string, std::string>;
#pragma db value(phone_numbers)

#pragma db object
class person
{
 ...

 phone_numbers phone_;
};

We can also use data members from composite value types in database queries (Chapter 4,

"Querying the Database"). For each composite value in a persistent class, the query class defines

a nested member that contains members corresponding to the data members in the value type. We

can then use the member access syntax (.) to refer to data members in value types. For example,

the query class for the person object presented above contains the name member (its name is

derived from the name_ data member) which in turn contains the extras member (its name is

derived from the name::extras_ data member of the composite value type). This process

continues recursively for nested composite value types and, as a result, we can use the

query::name.extras.nickname expression while querying the database for the person
objects. For example:

using query = odb::query<person>;
using result = odb::result<person>;

transaction t (db.begin ());

result r (db.query<person> (
 query::name.extras.nickname == "Squeaky"));

...

t.commit ();

Revision 2.6, March 2025124 C++ Object Persistence with ODB

7.2 Composite Value Types

7.2.1 Composite Object Ids

An object id can be of a composite value type, for example:

#pragma db value
class name
{
 ...

 std::string first_;
 std::string last_;
};

#pragma db object
class person
{
 ...

 #pragma db id
 name name_;
};

However, a value type that can be used as an object id has a number of restrictions. Such a value

type cannot have container, object pointer, or read-only data members. It also must be

default-constructible, copy-constructible, and copy-assignable. Furthermore, if the persistent class

in which this composite value type is used as object id has session support enabled (Chapter 11,

"Session"), then it must also implement the less-than comparison operator (operator<).

7.2.2 Composite Value Column and Table Names

Customizing a column name for a data member of a simple value type is straightforward: we

simply specify the desired name with the db column pragma (Section 14.4.9, "column"). For

composite value types things are slightly more complex since they are mapped to multiple

columns. Consider the following example:

#pragma db value
class name
{
 ...

 std::string first_;
 std::string last_;
};

#pragma db object
class person
{
 ...

125Revision 2.6, March 2025 C++ Object Persistence with ODB

7.2.1 Composite Object Ids

 #pragma db id auto
 unsigned long long id_;

 name name_;
};

The column names for the first_ and last_ members are constructed by using the sanitized

name of the person::name_ member as a prefix and the names of the members in the value

type (first_ and last_) as suffixes. As a result, the database schema for the above classes

will look like this:

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 name_first TEXT NOT NULL,
 name_last TEXT NOT NULL);

We can customize both the prefix and the suffix using the db column pragma as shown in the

following example:

#pragma db value
class name
{
 ...

 #pragma db column("first_name")
 std::string first_;

 #pragma db column("last_name")
 std::string last_;
};

#pragma db object
class person
{
 ...

 #pragma db column("person_")
 name name_;
};

The database schema changes as follows:

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 person_first_name TEXT NOT NULL,
 person_last_name TEXT NOT NULL);

Revision 2.6, March 2025126 C++ Object Persistence with ODB

7.2.2 Composite Value Column and Table Names

We can also make the column prefix empty, for example:

#pragma db object
class person
{
 ...

 #pragma db column("")
 name name_;
};

This will result in the following schema:

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 first_name TEXT NOT NULL,
 last_name TEXT NOT NULL);

The same principle applies when a composite value type is used as an element of a container,

except that instead of db column, either the db value_column (Section 14.4.36,

"value_column") or db key_column (Section 14.4.35, "key_column") pragmas are used

to specify the column prefix.

When a composite value type contains a container, an extra table is used to store its elements

(Chapter 5, "Containers"). The names of such tables are constructed in a way similar to the

column names, except that by default both the object name and the member name are used as a

prefix. For example:

#pragma db value
class name
{
 ...

 std::string first_;
 std::string last_;
 std::vector<std::string> nicknames_;
};

#pragma db object
class person
{
 ...

 name name_;
};

127Revision 2.6, March 2025 C++ Object Persistence with ODB

7.2.2 Composite Value Column and Table Names

The corresponding database schema will look like this:

CREATE TABLE person_name_nicknames (
 object_id BIGINT UNSIGNED NOT NULL,
 index BIGINT UNSIGNED NOT NULL,
 value TEXT NOT NULL)

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 name_first TEXT NOT NULL,
 name_last TEXT NOT NULL);

To customize the container table name we can use the db table pragma (Section 14.4.20,

"table"), for example:

#pragma db value
class name
{
 ...

 #pragma db table("nickname")
 std::vector<std::string> nicknames_;
};

#pragma db object
class person
{
 ...

 #pragma db table("person_")
 name name_;
};

This will result in the following schema changes:

CREATE TABLE person_nickname (
 object_id BIGINT UNSIGNED NOT NULL,
 index BIGINT UNSIGNED NOT NULL,
 value TEXT NOT NULL)

Similar to columns, we can make the table prefix empty.

7.3 Pointers and NULL Value Semantics

Relational database systems have a notion of the special NULL value that is used to indicate the

absence of a valid value in a column. While by default ODB maps values to columns that do not

allow NULL values, it is possible to change that with the db null pragma (Section 14.4.6,

"null/not_null").

Revision 2.6, March 2025128 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

To properly support the NULL semantics, the C++ value type must have a notion of a NULL value

or a similar special state concept. Most basic C++ types, such as int or std::string, do not

have this notion and therefore cannot be used directly for NULL-enabled data members (in the

case of a NULL value being loaded from the database, such data members will be default-initial­

ized).

To allow the easy conversion of value types that do not support the NULL semantics into the ones

that do, ODB provides the odb::nullable class template. It allows us to wrap an existing

C++ type into a container-like class that can either be NULL or contain a value of the wrapped

type. ODB also automatically enables the NULL values for data members of the

odb::nullable type. For example:

#include <odb/nullable.hxx>

#pragma db object
class person
{
 ...

 std::string first_; // TEXT NOT NULL
 odb::nullable<std::string> middle_; // TEXT NULL
 std::string last_; // TEXT NOT NULL
};

The odb::nullable class template is defined in the <odb/nullable.hxx> header file

and has the following interface:

namespace odb
{
 template <typename T>
 class nullable
 {
 public:
 using value_type = T;

 nullable ();
 nullable (const T&);
 nullable (const nullable&);
 template <typename Y> explicit nullable (const nullable<Y>&);

 nullable& operator= (const T&);
 nullable& operator= (const nullable&);
 template <typename Y> nullable& operator= (const nullable<Y>&);

 void swap (nullable&);

 // Accessor interface.
 //
 bool null () const;

129Revision 2.6, March 2025 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

 T& get ();
 const T& get () const;

 // Pointer interface.
 //
 operator bool_convertible () const;

 T* operator-> ();
 const T* operator-> () const;

 T& operator* ();
 const T& operator* () const;

 // Reset to the NULL state.
 //
 void reset ();
 };
}

The following example shows how we can use this interface:

 nullable<string> ns;

 // Using the accessor interface.
 //
 if (ns.null ())
 {
 s = "abc";
 }
 else
 {
 string s (ns.get ());
 ns.reset ();
 }

 // The same using the pointer interface.
 //
 if (!ns)
 {
 s = "abc";
 }
 else
 {
 string s (*ns);
 ns.reset ();
 }

Revision 2.6, March 2025130 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

The odb::nullable class template requires the wrapped type to have public default and copy

constructors as well as the copy assignment operator. Note also that the odb::nullable

implementation is not the most efficient in that it always contains a fully constructed value of the

wrapped type. This is normally not a concern for simple types such as the C++ fundamental types

or std::string. However, it may become an issue for more complex types. In such cases you

may want to consider using a more efficient implementation of the optional value concept such as

the optional class template from Boost (Section 23.4, "Optional Library").

Another common C++ representation of a value that can be NULL is a pointer. ODB will auto­

matically handle data members that are pointers to values, however, it will not automatically

enable NULL values for such data members, as is the case for odb::nullable. Instead, if the

NULL value is desired, we will need to enable it explicitly using the db null pragma. For

example:

#pragma db object
class person
{
 ...

 std::string first_;

 #pragma db null
 std::unique_ptr<std::string> middle_;

 std::string last_;
};

The ODB compiler includes built-in support for using std::auto_ptr (C++98/03 only),

std::unique_ptr (C++11), and std::shared_ptr (C++11) as pointers to values. Plus,

ODB profile libraries, that are available for commonly used frameworks and libraries (such as

Boost and Qt), provide support for smart pointers found in these frameworks and libraries (Part

III, "Profiles").

ODB also supports the NULL semantics for composite values. In the relational database the NULL

composite value is translated to NULL values for all the simple data members of this composite

value. For example:

#pragma db value
struct name
{
 std::string first_;
 odb::nullable<std::string> middle_;
 std::string last_;
};

#pragma db object
class person

131Revision 2.6, March 2025 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

{
 ...
 odb::nullable<name> name_;
};

ODB does not support the NULL semantics for containers. This also means that a composite value

that contains a container cannot be NULL. With this limitation in mind, we can still use smart

pointers in data members of container types. The only restriction is that these pointers must not be

NULL. For example:

#pragma db object
class person
{
 ...

 std::unique_ptr<std::vector<std::string>> aliases_;
};

Revision 2.6, March 2025132 C++ Object Persistence with ODB

7.3 Pointers and NULL Value Semantics

8 Inheritance

In C++ inheritance can be used to achieve two different goals. We can employ inheritance to

reuse common data and functionality in multiple classes. For example:

class person
{
public:
 const std::string& first () const;
 const std::string& last () const;

private:
 std::string first_;
 std::string last_;
};

class employee: public person
{
 ...
};

class contractor: public person
{
 ...
};

In the above example both the employee and contractor classes inherit the first_ and

last_ data members as well as the first() and last() accessors from the person base

class.

A common trait of this inheritance style, referred to as reuse inheritance from now on, is the lack

of virtual functions and a virtual destructor in the base class. Also with this style the application

code is normally written in terms of the derived classes instead of the base.

The second way to utilize inheritance in C++ is to provide polymorphic behavior through a

common interface. In this case the base class defines a number of virtual functions and, normally,

a virtual destructor while the derived classes provide specific implementations of these virtual

functions. For example:

class person
{
public:
 enum employment_status
 {
 unemployed,
 temporary,
 permanent,
 self_employed

133Revision 2.6, March 2025 C++ Object Persistence with ODB

8 Inheritance

 };

 virtual employment_status
 employment () const = 0;

 virtual
 ~person ();
};

class employee: public person
{
public:
 virtual employment_status
 employment () const
 {
 return temporary_ ? temporary : permanent;
 }

private:
 bool temporary_;
};

class contractor: public person
{
public:
 virtual employment_status
 employment () const
 {
 return self_employed;
 }
};

With this inheritance style, which we will call polymorphism inheritance, the application code

normally works with derived classes via the base class interface. Note also that it is very common

to mix both styles in the same hierarchy. For example, the above two code fragments can be

combined so that the person base class provides the common data members and functions as

well as defines the polymorphic interface.

The following sections describe the available strategies for mapping reuse and polymorphism

inheritance styles to a relational data model. Note also that the distinction between the two styles

is conceptual rather than formal. For example, it is possible to treat a class hierarchy that defines

virtual functions as a case of reuse inheritance if this results in the desired database mapping and

semantics.

Generally, classes that employ reuse inheritance are mapped to completely independent entities in

the database. They use different object id spaces and should always be passed to and returned

from the database operations as pointers or references to derived types. In other words, from the

persistence point of view, such classes behave as if the data members from the base classes were

Revision 2.6, March 2025134 C++ Object Persistence with ODB

8 Inheritance

copied verbatim into the derived ones.

In contrast, classes that employ polymorphism inheritance share the object id space and can be

passed to and returned from the database operations polymorphically as pointers or references to

the base class.

For both inheritance styles it is sometimes desirable to prevent instances of a base class from

being stored in the database. To achieve this a persistent class can be declared abstract using the

db abstract pragma (Section 14.1.3, "abstract"). Note that a C++-abstract class, or a

class that has one or more pure virtual functions and therefore cannot be instantiated, is also

database-abstract. However, a database-abstract class is not necessarily C++-abstract. The ODB

compiler automatically treats C++-abstract classes as database-abstract.

8.1 Reuse Inheritance

Each non-abstract class from the reuse inheritance hierarchy is mapped to a separate database

table that contains all its data members, including those inherited from base classes. An abstract

persistent class does not have to define an object id, nor a default constructor, and it does not

have a corresponding database table. An abstract class cannot be a pointed-to object in a relation­

ship. Multiple inheritance is supported as long as each base class is only inherited once. The

following example shows a persistent class hierarchy employing reuse inheritance:

// Abstract person class. Note that it does not declare the
// object id.
//
#pragma db object abstract
class person
{
 ...

 std::string first_;
 std::string last_;
};

// Abstract employee class. It derives from the person class and
// declares the object id for all the concrete employee types.
//
#pragma db object abstract
class employee: public person
{
 ...

 #pragma db id auto
 unsigned long long id_;
};

// Concrete permanent_employee class. Note that it doesn’t define

135Revision 2.6, March 2025 C++ Object Persistence with ODB

8.1 Reuse Inheritance

// any data members of its own.
//
#pragma db object
class permanent_employee: public employee
{
 ...
};

// Concrete temporary_employee class. It adds the employment
// duration in months.
//
#pragma db object
class temporary_employee: public employee
{
 ...

 unsigned long duration_;
};

// Concrete contractor class. It derives from the person class
// (and not employee; an independent contractor is not considered
// an employee). We use the contractor’s external email address
// as the object id.
//
#pragma db object
class contractor: public person
{
 ...

 #pragma db id
 std::string email_;
};

The sample database schema for this hierarchy is shown below.

CREATE TABLE permanent_employee (
 first TEXT NOT NULL,
 last TEXT NOT NULL,
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT);

CREATE TABLE temporary_employee (
 first TEXT NOT NULL,
 last TEXT NOT NULL,
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
 duration BIGINT UNSIGNED NOT NULL);

CREATE TABLE contractor (
 first TEXT NOT NULL,
 last TEXT NOT NULL,
 email VARCHAR (128) NOT NULL PRIMARY KEY);

Revision 2.6, March 2025136 C++ Object Persistence with ODB

8.1 Reuse Inheritance

The complete version of the code presented in this section is available in the inheri­
tance/reuse example in the odb-examples package.

8.2 Polymorphism Inheritance

There are three general approaches to mapping a polymorphic class hierarchy to a relational

database. These are table-per-hierarchy, table-per-difference, and table-per-class. With the

table-per-hierarchy mapping, all the classes in a hierarchy are stored in a single, "wide" table.

NULL values are stored in columns corresponding to data members of derived classes that are not

present in any particular instance.

In the table-per-difference mapping, each class is mapped to a separate table. For a derived class,

this table contains only columns corresponding to the data members added by this derived class.

Finally, in the table-per-class mapping, each class is mapped to a separate table. For a derived

class, this table contains columns corresponding to all the data members, from this derived class

all the way down to the root of the hierarchy.

The table-per-difference mapping is generally considered as having the best balance of flexibility,

performance, and space efficiency. It also results in a more canonical relational database model

compared to the other two approaches. As a result, this is the mapping currently implemented in

ODB. Other mappings may be supported in the future. Note that multiple polymorphism inheri­

tance or mixing polymorphism and reuse inheritance is not supported.

A pointer or reference to an ordinary, non-polymorphic object has just one type — the class type

of that object. When we start working with polymorphic objects, there are two types to consider:

the static type, or the declaration type of a reference or pointer, and the object’s actual or dynamic

type. An example will help illustrate the difference:

class person {...};
class employee: public person {...};

person p;
employee e;

person& r1 (p);
person& r2 (e);

unique_ptr<person> p1 (new employee);

In the above example, the r1 reference’s both static and dynamic types are person. In contrast,

the r2 reference’s static type is person while its dynamic type (the actual object that it refers

to) is employee. Similarly, p1 points to the object of the person static type but employee
dynamic type.

137Revision 2.6, March 2025 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

In C++, the primary mechanisms for working with polymorphic objects are virtual functions. We

call a virtual function only knowing the object’s static type, but the version corresponding to the

object’s dynamic type is automatically executed. This is the essence of runtime polymorphism

support in C++: we can operate in terms of a base class interface but get the derived class’ behav­

ior. Similarly, the essence of the runtime polymorphism support in ODB is to allow us to persist,

load, update, and query in terms of the base class interface but have the derived class actually

stored in the database.

To declare a persistent class as polymorphic we use the db polymorphic pragma. We only

need to declare the root class of a hierarchy as polymorphic; ODB will treat all the derived

classes as polymorphic automatically. For example:

#pragma db object polymorphic
class person
{
 ...

 virtual
 ~person () = 0; // Automatically abstract.

 #pragma db id auto
 unsigned long long id_;

 std::string first_;
 std::string last_;
};

#pragma db object
class employee: public person
{
 ...

 bool temporary_;
};

#pragma db object
class contractor: public person
{

 std::string email_;
};

A persistent class hierarchy declared polymorphic must also be polymorphic in the C++ sense,

that is, the root class must declare or inherit at least one virtual function. It is recommended that

the root class also declares a virtual destructor. The root class of the polymorphic hierarchy must

contain the data member designated as object id (a persistent class without an object id cannot be

polymorphic). Note also that, unlike reuse inheritance, abstract polymorphic classes have a table

in the database, just like non-abstract classes.

Revision 2.6, March 2025138 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

Persistent classes in the same polymorphic hierarchy must use the same kind of object pointer

(Section 3.3, "Object and View Pointers"). If the object pointer for the root class is specified as a

template or using the special raw pointer syntax (*), then the ODB compiler will automatically

use the same object pointer for all the derived classes. For example:

#pragma db object polymorphic pointer(std::shared_ptr)
class person
{
 ...
};

#pragma db object // Object pointer is std::shared_ptr<employee>.
class employee: public person
{
 ...
};

#pragma db object // Object pointer is std::shared_ptr<contractor>.
class contractor: public person
{
 ...
};

Similarly, if we enable or disable session support (Chapter 11, "Session") for the root class, then

the ODB compiler will automatically enable or disable it for all the derived classes.

For polymorphic persistent classes, all the database operations can be performed on objects with

different static and dynamic types. Similarly, operations that load persistent objects from the

database (load(), query(), etc.), can return objects with different static and dynamic types.

For example:

unsigned long long id1, id2;

// Persist.
//
{
 shared_ptr<person> p1 (new employee (...));
 shared_ptr<person> p2 (new contractor (...));

 transaction t (db.begin ());
 id1 = db.persist (p1); // Stores employee.
 id2 = db.persist (p2); // Stores contractor.
 t.commit ();
}

// Load.
//
{
 shared_ptr<person> p;

139Revision 2.6, March 2025 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

 transaction t (db.begin ());
 p = db.load<person> (id1); // Loads employee.
 p = db.load<person> (id2); // Loads contractor.
 t.commit ();
}

// Query.
//
{
 using query = odb::query<person>;
 using result = odb::result<person>;

 transaction t (db.begin ());

 result r (db.query<person> (query::last == "Doe"));

 for (result::iterator i (r.begin ()); i != r.end (); ++i)
 {
 person& p (*i); // Can be employee or contractor.
 }

 t.commit ();
}

// Update.
//
{
 shared_ptr<person> p;
 shared_ptr<employee> e;

 transaction t (db.begin ());

 e = db.load<employee> (id1);
 e->temporary (false);
 p = e;
 db.update (p); // Updates employee.

 t.commit ();
}

// Erase.
//
{
 shared_ptr<person> p;

 transaction t (db.begin ());
 p = db.load<person> (id1); // Loads employee.

Revision 2.6, March 2025140 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

 db.erase (p); // Erases employee.
 db.erase<person> (id2); // Erases contractor.
 t.commit ();
}

The table-per-difference mapping, as supported by ODB, requires two extra columns, in addition

to those corresponding to the data members. The first, called discriminator, is added to the table

corresponding to the root class of the hierarchy. This column is used to determine the dynamic

type of each object. The second column is added to tables corresponding to the derived classes

and contains the object id. This column is used to form a foreign key constraint referencing the

root class table.

When querying the database for polymorphic objects, it is possible to obtain the discriminator

value without instantiating the object. For example:

using query = odb::query<person>;
using result = odb::result<person>;

transaction t (db.begin ());

result r (db.query<person> (query::last == "Doe"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
 std::string d (i.discriminator ());
 ...
}

t.commit ();

In the current implementation, ODB has limited support for customizing names, types, and values

of the extra columns. Currently, the discriminator column is always called typeid and contains

a namespace-qualified class name (for example, "employee" or "hr::employee"). The id

column in the derived class table has the same name as the object id column in the root class

table. Future versions of ODB will add support for customizing these extra columns.

The sample database schema for the above polymorphic hierarchy is shown below.

CREATE TABLE person (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
 typeid VARCHAR(128) NOT NULL,
 first TEXT NOT NULL,
 last TEXT NOT NULL);

CREATE TABLE employee (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 temporary TINYINT(1) NOT NULL,

141Revision 2.6, March 2025 C++ Object Persistence with ODB

8.2 Polymorphism Inheritance

 CONSTRAINT employee_id_fk
 FOREIGN KEY (id)
 REFERENCES person (id)
 ON DELETE CASCADE);

CREATE TABLE contractor (
 id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
 email TEXT NOT NULL,

 CONSTRAINT contractor_id_fk
 FOREIGN KEY (id)
 REFERENCES person (id)
 ON DELETE CASCADE);

The complete version of the code presented in this section is available in the inheri­
tance/polymorphism example in the odb-examples package.

8.2.1 Performance and Limitations

A database operation on a non-polymorphic object normally translates to a single database state­

ment execution (objects with containers and eager object pointers can be the exception). Because

polymorphic objects have their data members stored in multiple tables, some database operations

on such objects may result in multiple database statements being executed while others may

require more complex statements. There is also some functionality that is not available to poly­

morphic objects.

The first part of this section discusses the performance implications to keep in mind when design­

ing and working with polymorphic hierarchies. The second part talks about limitations of poly­

morphic objects.

The most important aspect of a polymorphic hierarchy that affects database performance is its

depth. The distance between the root of the hierarchy and the derived class translates directly to

the number of database statements that will have to be executed in order to persist, update, or

erase this derived class. It also translates directly to the number of SQL JOIN clauses that will be

needed to load or query the database for this derived class. As a result, to achieve best perfor­

mance, we should try to keep our polymorphic hierarchies as flat as possible.

When loading an object or querying the database for objects, ODB will need to execute two state­

ments if this object’s static and dynamic types are different but only one statement if they are the

same. This example will help illustrate the difference:

unsigned long long id;

{
 employee e (...);

 transaction t (db.begin ());

Revision 2.6, March 2025142 C++ Object Persistence with ODB

8.2.1 Performance and Limitations

 id = db.persist (e);
 t.commit ();
}

{
 shared_ptr<person> p;

 transaction t (db.begin ());
 p = db.load<person> (id); // Requires two statement.
 p = db.load<employee> (id); // Requires only one statement.
 t.commit ();
}

As a result, we should try to load and query using the most derived class possible.

Finally, for polymorphic objects, erasing via the object instance is faster than erasing via its

object id. In the former case the object’s dynamic type can be determined locally in the applica­

tion while in the latter case an extra statement has to be executed to achieve the same result. For

example:

shared_ptr<person> p = ...;

transaction t (db.begin ());
db.erase<person> (p.id ()); // Slower (executes extra statement).
db.erase (p); // Faster.
t.commit ();

Polymorphic objects can use all the mechanisms that are available to ordinary objects. These

include containers (Chapter 5, "Containers"), object relationships, including to polymorphic

objects (Chapter 6, "Relationships"), views (Chapter 10, "Views"), session (Chapter 11,

"Session"), and optimistic concurrency (Chapter 12, "Optimistic Concurrency"). There are,

however, a few limitations, mainly due to the underlying use of SQL to access the data.

When a polymorphic object is "joined" in a view, and the join condition (either in the form of an

object pointer or a custom condition) comes from the object itself (as opposed to one of the

objects joined previously), then this condition must only use data members from the derived

class. For example, consider the following polymorphic object hierarchy and a view:

#pragma db object polymorphic
class employee
{
 ...
};

#pragma db object
class permanent_employee: public employee
{
 ...

143Revision 2.6, March 2025 C++ Object Persistence with ODB

8.2.1 Performance and Limitations

};

#pragma db object
class temporary_employee: public employee
{
 ...

 shared_ptr<permanent_employee> manager_;
};

#pragma db object
class contractor: public temporary_employee
{
 shared_ptr<permanent_employee> manager_;
};

#pragma db view object(permanent_employee) \
 object(contractor: contractor::manager_)
struct contractor_manager
{
 ...
};

This view will not function correctly because the join condition (manager_) comes from the

base class (temporary_employee) instead of the derived (contractor). The reason for

this limitation is the JOIN clause order in the underlying SQL SELECT statement. In the view

presented above, the table corresponding to the base class (temporary_employee) will have

to be joined first which will result in this view matching both the temporary_employee and

contractor objects instead of just contractor. It is usually possible to resolve this issue by

reordering the objects in the view. Our example, for instance, can be fixed by swapping the two

objects:

#pragma db view object(contractor) \
 object(permanent_employee: contractor::manager_)
struct contractor_manager
{
 ...
};

The erase_query() database function (Section 3.11, "Deleting Persistent Objects") also has

limited functionality when used on polymorphic objects. Because many database implementa­

tions do not support JOIN clauses in the SQL DELETE statement, only data members from the

derived class being erased can be used in the query condition. For example:

Revision 2.6, March 2025144 C++ Object Persistence with ODB

8.2.1 Performance and Limitations

using query = odb::query<employee>;

transaction t (db.begin ());
db.erase_query<employee> (query::permanent); // Ok.
db.erase_query<employee> (query::last == "Doe"); // Error.
t.commit ();

8.3 Mixed Inheritance

It is possible to mix the reuse and polymorphism inheritance styles in the same hierarchy. In this

case, the reuse inheritance must be used for the "bottom" (base) part of the hierarchy while the

polymorphism inheritance — for the "top" (derived) part. For example:

#pragma db object
class person
{
 ...
};

#pragma db object polymorphic
class employee: public person // Reuse inheritance.
{
 ...
};

#pragma db object
class temporary_employee: public employee // Polymorphism inheritance.
{
 ...
};

#pragma db object
class permanent_employee: public employee // Polymorphism inheritance.
{
 ...
};

145Revision 2.6, March 2025 C++ Object Persistence with ODB

8.3 Mixed Inheritance

9 Sections

ODB sections are an optimization mechanism that allows us to partition data members of a

persistent class into groups that can be separately loaded and/or updated. This can be useful, for

example, if an object contains expensive to load or update data members (such as BLOBs or

containers) and that are accessed or modified infrequently. For example:

#include <odb/section.hxx>

#pragma db object
class person
{
 ...

 #pragma db load(lazy) update(manual)
 odb::section keys_;

 #pragma db section(keys_) type("BLOB")
 char public_key_[1024];

 #pragma db section(keys_) type("BLOB")
 char private_key_[1024];
};

transaction t (db.begin ());

unique_ptr<person> p (db.load<person> (...)); // Keys are not loaded.

if (need_keys)
{
 db.load (*p, p->keys_); // Load keys.
 ...
}

db.update (*p); // Keys are not updated.

if (update_keys)
{
 ...
 db.update (*p, p->keys_); // Update keys.
}

t.commit ();

A complete example that shows how to use sections is available in the section directory in the

odb-examples package.

Revision 2.6, March 2025146 C++ Object Persistence with ODB

9 Sections

Why do we need to group data members into sections? Why can’t each data member be loaded

and updated independently if and when necessary? The reason for this requirement is that loading

or updating a group of data members with a single database statement is significantly more effi­

cient than loading or updating each data member with a separate statement. Because ODB

prepares and caches statements used to load and update persistent objects, generating a custom

statement for a specific set of data members that need to be loaded or updated together is not a

viable approach either. To resolve this, ODB allows us to group data members that are often

updated and/or loaded together into sections. To achieve the best performance, we should aim to

find a balance between having too many sections with too few data members and too few sections

with too many data members. We can use the access and modification patterns of our application

as a base for this decision.

To add a new section to a persistent class we declare a new data member of the odb::section
type. At this point we also need to specify the loading and updating behavior of this section with

the db load and db update pragmas, respectively.

The loading behavior of a section can be either eager or lazy. An eager-loaded section is

always loaded as part of the object load. A lazy-loaded section is not loaded as part of the object

load and has to be explicitly loaded with the database::load() function (discussed below)

if and when necessary.

The updating behavior of a section can be always, change, or manual. An always-updated

section is always updated as part of the object update, provided it has been loaded. A

change-updated section is only updated as part of the object update if it has been loaded and

marked as changed. A manually-updated section is never updated as part of the object update and

has to be explicitly updated with the database::update() function (discussed below) if and

when necessary.

If no loading behavior is specified explicitly, then an eager-loaded section is assumed. Similarly,

if no updating behavior is specified, then an always-updated section is assumed. An eager-loaded,

always-updated section is pointless and therefore illegal. Only persistent classes with an object id

can have sections.

To specify that a data member belongs to a section we use the db section pragma with the

section’s member name as its single argument. Except for special data members such as the

object id and optimistic concurrency version, any direct, non-transient member of a persistent

class can belong to a section, including composite values, containers, and pointers to objects. For

example:

#pragma db value
class text
{
 std::string data;
 std::string lang;
};

147Revision 2.6, March 2025 C++ Object Persistence with ODB

9 Sections

#pragma db object
class person
{
 ...

 #pragma db load(lazy)
 odb::section extras_;

 #pragma db section(extras_)
 text bio_;

 #pragma db section(extras_)
 std::vector<std::string> nicknames_;

 #pragma db section(extras_)
 std::shared_ptr<person> emergency_contact_;
};

An empty section is pointless and therefore illegal, except in abstract or polymorphic classes

where data members can be added to a section by derived classes (see Section 9.1, "Sections and

Inheritance").

The odb::section class is defined in the <odb/section.hxx> header file and has the

following interface:

namespace odb
{
 class section
 {
 public:
 // Load state.
 //
 bool
 loaded () const;

 void
 unload ();

 void
 load ();

 // Change state.
 //
 bool
 changed () const;

 void
 change ();

Revision 2.6, March 2025148 C++ Object Persistence with ODB

9 Sections

 // User data.
 //
 unsigned char
 user_data () const;

 void
 user_data (unsigned char);
 };
}

The loaded() accessor can be used to determine whether a section is already loaded. The

unload() modifier marks a loaded section as not loaded. This, for example, can be useful if

you don’t want the section to be reloaded during the object reload. The load() modifier marks

an unloaded section as loaded without actually loading any of its data members. This, for

example, can be useful if you don’t want to load the old state before overwriting it with

update().

The changed() accessor can be used to query the section’s change state. The change()

modifier marks the section as changed. It is valid to call this modifier for an unloaded (or tran­

sient) section, however, the state will be reset back to unchanged once the section (or object) is

loaded. The change state is only relevant to sections with change-updated behavior and is ignored

for all other sections.

The size of the section class is one byte with four bits available to store a custom state via the

user_data() accessor and modifier.

The odb::database class provides special versions of the load() and update() functions

that allow us to load and update sections of a persistent class. Their signatures are as follows:

 template <typename T>
 void
 load (T& object, section&);

 template <typename T>
 void
 update (const T& object, const section&);

Before calling the section load() function, the object itself must already be loaded. If the

section is already loaded, then the call to load() will reload its data members. It is illegal to

explicitly load an eager-loaded section.

Before calling the section update() function, the section (and therefore the object) must be in

the loaded state. If the section is not loaded, the odb::section_not_loaded exception is

thrown. The section update() function does not check but does clear the section’s change

state. In other words, section update() will always update section data members in the

database and clear the change flag. Note also that any section, that is, always-, change-, or manu­

149Revision 2.6, March 2025 C++ Object Persistence with ODB

9 Sections

ally-updated, can be explicitly updated with this function.

Both section load() and update(), just like the rest of the database operations, must be

performed within a transaction. Notice also that both load() and update() expect a reference

to the section as their second argument. This reference must refer to the data member in the

object passed as the first argument. If instead it refers to some other instance of the section
class, for example, a local copy or a temporary, then the odb::section_not_in_object

exception is thrown. For example:

#pragma db object
class person
{
public:
 ...

 odb::section
 keys () const {return keys_;}

private:
 odb::section keys_;

 ...
};

unique_ptr<person> p (db.load<person> (...));

section s (p->keys ());
db.load (*p, s); // Throw section_not_in_object, copy.

db.update (*p, p->keys ()); // Throw section_not_in_object, copy.

At first glance it may seem more appropriate to make the section class non-copyable in order

to prevent such errors from happening. However, it is perfectly reasonable to expect to be able to

copy (or assign) sections as part of the object copying (or assignment). As a result, sections are

left copyable and copy-assignable, however, this functionality should not be used in accessors or

modifiers. Instead, section accessors and modifiers should always be by-reference. Here is how

we can fix our previous example:

#pragma db object
class person
{
public:
 ...

 const odb::section&
 keys () const {return keys_;}

 odb::section&
 keys () {return keys_;}

Revision 2.6, March 2025150 C++ Object Persistence with ODB

9 Sections

private:
 odb::section keys_;

 ...
};

unique_ptr<person> p (db.load<person> (...));

section& s (p->keys ());
db.load (*p, s); // Ok, reference.

db.update (*p, p->keys ()); // Ok, reference.

Several other database operations affect sections. The state of a section in a transient object is

undefined. That is, before the call to object persist() or load() functions, or after the call

to object erase() function, the values returned by the section::loaded() and

section::changed() accessors are undefined.

After the call to persist(), all sections, including eager-loaded ones, are marked as loaded

and unchanged. If instead we are loading an object with the load() call or as a result of a query,

then eager-loaded sections are loaded and marked as loaded and unchanged while lazy-loaded

ones are marked as unloaded. If a lazy-loaded section is later loaded with the section load()
call, then it is marked as loaded and unchanged.

When we update an object with the update() call, manually-updated sections are ignored

while always-updated sections are updated if they are loaded. Change-updated sections are only

updated if they are both loaded and marked as changed. After the update, such sections are reset

to the unchanged state. When we reload an object with the reload() call, sections that were

loaded are automatically reloaded and reset to the unchanged state.

To further illustrate the state transitions of a section, consider this example:

#pragma db object
class person
{
 ...

 #pragma db load(lazy) update(change)
 odb::section keys_;

 ...
};

transaction t (db.begin ());

person p ("John", "Doe"); // Section state is undefined (transient).

151Revision 2.6, March 2025 C++ Object Persistence with ODB

9 Sections

db.persist (p); // Section state: loaded, unchanged.

unique_ptr<person> l (
 db.load<person> (...)); // Section state: unloaded, unchanged.

db.update (*l); // Section not updated since not loaded.
db.update (p); // Section not updated since not changed.

p.keys_.change (); // Section state: loaded, changed.
db.update (p); // Section updated, state: loaded, unchanged.

db.update (*l, l->keys_); // Throw section_not_loaded.
db.update (p, p.keys_); // Section updated even though not changed.

db.reload (*l); // Section not reloaded since not loaded.
db.reload (p); // Section reloaded, state: loaded, unchanged.

db.load (*l, l->keys_); // Section loaded, state: loaded, unchanged.
db.load (p, p.keys_); // Section reloaded, state: loaded, unchanged.

db.erase (p); // Section state is undefined (transient).

t.commit ();

When using change-updated behavior, it is our responsibility to mark the section as changed

when any of the data members belonging to this section is modified. A natural place to mark the

section as changed is the modifiers for section data members, for example:

#pragma db object
class person
{
 ...

 using key_type = std::array<char, 1024>;

 const key_type&
 public_key () const {return public_key_;}

 void
 public_key (const key_type& k)
 {
 public_key_ = k;
 keys_.change ();
 }

 const key_type&
 private_key () const {return private_key_;}

 void
 private_key (const key_type& k)
 {

Revision 2.6, March 2025152 C++ Object Persistence with ODB

9 Sections

 private_key_ = k;
 keys_.change ();
 }

private:
 #pragma db load(lazy) update(change)
 odb::section keys_;

 #pragma db section(keys_) type("BLOB")
 key_type public_key_;

 #pragma db section(keys_) type("BLOB")
 key_type private_key_;

 ...
};

One interesting aspect of change-updated sections is what happens when a transaction that

performed an object or section update is later rolled back. In this case, while the change state of a

section has been reset (after update), actual changes were not committed to the database.

Change-updated sections handle this case by automatically registering a rollback callback and

then, if it is called, restoring the original change state. The following code illustrates this seman­

tics (continuing with the previous example):

unique_ptr<person> p;

try
{
 transaction t (db.begin ());
 p = db.load<person> (...);
 db.load (*p, p->keys_);

 p->private_key (new_key); // The section is marked changed.
 db.update (*p); // The section is reset to unchanged.

 throw failed (); // Triggers rollback.
 t.commit ();
}
catch (const failed&)
{
 // The section is restored back to changed.
}

9.1 Sections and Inheritance

With both reuse and polymorphism inheritance (Chapter 8, "Inheritance") it is possible to add

new sections to derived classes. It is also possible to add data members from derived classes to

sections declared in the base. For example:

153Revision 2.6, March 2025 C++ Object Persistence with ODB

9.1 Sections and Inheritance

#pragma db object polymorphic
class person
{
 ...

 virtual void
 print ();

 #pragma db load(lazy)
 odb::section print_;

 #pragma db section(print_)
 std::string bio_;
};

#pragma db object
class employee: public person
{
 ...

 virtual void
 print ();

 #pragma db section(print_)
 std::vector<std::string> employment_history_;
};

transaction t (db.begin ());

unique_ptr<person> p (db.load<person> (...)); // Person or employee.
db.load (*p, p->print_); // Load data members needed for print.
p->print ();

t.commit ();

When data members of a section are spread over several classes in a reuse inheritance hierarchy,

both section load and update are performed with a single database statement. In contrast, with

polymorphism inheritance, section load is performed with a single statement while update

requires a separate statement for each class that adds to the section.

Note also that in polymorphism inheritance the section-to-object association is static. Or, in other

words, you can load a section via an object only if its static type actually contains this section.

The following example will help illustrate this point further:

#pragma db object polymorphic
class person
{
 ...
};

Revision 2.6, March 2025154 C++ Object Persistence with ODB

9.1 Sections and Inheritance

#pragma db object
class employee: public person
{
 ...

 #pragma db load(lazy)
 odb::section extras_;

 ...
};

#pragma db object
class manager: public employee
{
 ...
};

unique_ptr<manager> m (db.load<manager> (...));

person& p (*m);
employee& e (*m);
section& s (m->extras_);

db.load (p, s); // Error: extras_ is not in person.
db.load (e, s); // Ok: extras_ is in employee.

9.2 Sections and Optimistic Concurrency

When sections are used in a class with the optimistic concurrency model (Chapter 12, "Optimistic

Concurrency"), both section update and load operations compare the object version to that in the

database and throw the odb::object_changed exception if they do not match. In addition,

the section update operation increments the version to indicate that the object state has changed.

For example:

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 unsigned long long version_;

 #pragma db load(lazy)
 odb::section extras_;

 #pragma db section(extras_)
 std::string bio_;
};

155Revision 2.6, March 2025 C++ Object Persistence with ODB

9.2 Sections and Optimistic Concurrency

unique_ptr<person> p;

{
 transaction t (db.begin ());
 p = db.load<person> (...);
 t.commit ();
}

{
 transaction t (db.begin ());

 try
 {
 db.load (*p, p->extras_); // Throws if object state has changed.
 }
 catch (const object_changed&)
 {
 db.reload (*p);
 db.load (*p, p->extras_); // Cannot fail.
 }

 t.commit ();
}

Note also that if an object update triggers one or more section updates, then each such update will

increment the object version. As a result, an update of an object that contains sections may result

in a version increment by more than one.

When sections are used together with optimistic concurrency and inheritance, an extra step may

be required to enable this functionality. If you plan to add new sections to derived classes, then

the root class of the hierarchy (the one that declares the version data member) must be declared as

sectionable with the db sectionable pragma. For example:

#pragma db object polymorphic sectionable
class person
{
 ...

 #pragma db version
 unsigned long long version_;
};

#pragma db object
class employee: public person
{
 ...

 #pragma db load(lazy)
 odb::section extras_;

Revision 2.6, March 2025156 C++ Object Persistence with ODB

9.2 Sections and Optimistic Concurrency

 #pragma db section(extras_)
 std::vector<std::string> employment_history_;
};

This requirement has to do with the need to generate extra version increment code in the root

class that will be used by sections added in the derived classes. If you forget to declare the root

class as sectionable and later add a section to one of the derived classes, the ODB compiler will

issue diagnostics.

9.3 Sections and Lazy Pointers

If a lazy pointer (Section 6.4, "Lazy Pointers") belongs to a lazy-loaded section, then we end up

with two levels of lazy loading. Specifically, when the section is loaded, the lazy pointer is initial­

ized with the object id but the object itself is not loaded. For example:

#pragma db object
class employee
{
 ...

 #pragma db load(lazy)
 odb::section extras_;

 #pragma db section(extras_)
 odb::lazy_shared_ptr<employer> employer_;
};

transaction t (db.begin ());

unique_ptr<employee> e (db.load<employee> (...)); // employer_ is NULL.

db.load (*e, e->extras_); // employer_ contains valid employer id.

e->employer_.load (); // employer_ points to employer object.

t.commit ();

9.4 Sections and Change-Tracking Containers

If a change-tracking container (Section 5.4, "Change-Tracking Containers") belongs to a

change-updated section, then prior to an object update ODB will check if the container has been

changed and if so, automatically mark the section as changed. For example:

#pragma db object
class person
{
 ...

157Revision 2.6, March 2025 C++ Object Persistence with ODB

9.3 Sections and Lazy Pointers

 #pragma db load(lazy) update(change)
 odb::section extras_;

 #pragma db section(extras_)
 odb::vector<std::string> nicknames_;
};

transaction t (db.begin ());

unique_ptr<person> p (db.load<person> (...));
db.load (*p, p->extras_);

p->nicknames_.push_back ("JD");

db.update (*p); // Section is automatically updated even
 // though it was not marked as changed.
t.commit ();

Revision 2.6, March 2025158 C++ Object Persistence with ODB

9.4 Sections and Change-Tracking Containers

10 Views

An ODB view is a C++ class or struct type that embodies a light-weight, read-only projec­

tion of one or more persistent objects or database tables or the result of a native SQL query

execution.

Some of the common applications of views include loading a subset of data members from

objects or columns from database tables, executing and handling results of arbitrary SQL queries,

including aggregate queries and stored procedure calls, as well as joining multiple objects and/or

database tables using object relationships or custom join conditions.

Many relational databases also define the concept of views. Note, however, that ODB views are

not mapped to database views. Rather, by default, an ODB view is mapped to an SQL SELECT
query. However, if desired, it is easy to create an ODB view that is based on a database view.

Usually, views are defined in terms of other persistent entities, such as persistent objects,

database tables, sequences, etc. Therefore, before we can examine our first view, we need to

define a few persistent objects and a database table. We will use this model in examples through­

out this chapter. Here we assume that you are familiar with ODB object relationship support

(Chapter 6, "Relationships").

#pragma db object
class country
{
 ...

 #pragma db id
 std::string code_; // ISO 2-letter country code.

 std::string name_;
};

#pragma db object
class employer
{
 ...

 #pragma db id
 unsigned long long id_;

 std::string name_;
};

#pragma db object
class employee
{
 ...

159Revision 2.6, March 2025 C++ Object Persistence with ODB

10 Views

 #pragma db id
 unsigned long long id_;

 std::string first_;
 std::string last_;

 unsigned short age_;

 shared_ptr<country> residence_;
 shared_ptr<country> nationality_;

 shared_ptr<employer> employed_by_;
};

Besides these objects, we also have the legacy employee_extra table that is not mapped to

any persistent class. It has the following definition:

CREATE TABLE employee_extra(
 employee_id INTEGER NOT NULL,
 vacation_days INTEGER NOT NULL,
 previous_employer_id INTEGER)

The above persistent objects and database table as well as many of the views shown in this

chapter are based on the view example which can be found in the odb-examples package of

the ODB distribution.

To declare a view we use the db view pragma, for example:

#pragma db view object(employee)
struct employee_name
{
 std::string first;
 std::string last;
};

The above example shows one of the simplest views that we can create. It has a single associated

object (employee) and its purpose is to extract the employee’s first and last names without

loading any other data, such as the referenced country and employer objects.

Views use the same query facility (Chapter 4, "Querying the Database") as persistent objects.

Because support for queries is optional and views cannot be used without this support, you need

to compile any header that defines a view with the --generate-query ODB compiler option.

To query the database for a view we use the database::query(),

database::query_one(), or database::query_value() functions in exactly the

same way as we would use them to query the database for an object. For example, the following

code fragment shows how we can find the names of all the employees that are younger than 31:

Revision 2.6, March 2025160 C++ Object Persistence with ODB

10 Views

using query = odb::query<employee_name>;
using result = odb::result<employee_name>;

transaction t (db.begin ());

result r (db.query<employee_name> (query::age < 31));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
 const employee_name& en (*i);
 cout << en.first << " " << en.last << endl;
}

t.commit ();

A view can be defined as a projection of one or more objects, one or more tables, a combination

of objects and tables, or it can be the result of a custom SQL query. The following sections

discuss each of these kinds of view in more detail.

10.1 Object Views

To associate one or more objects with a view we use the db object pragma (Section 14.2.1,

"object"). We have already seen a simple, single-object view in the introduction to this

chapter. To associate the second and subsequent objects we repeat the db object pragma for

each additional object, for example:

#pragma db view object(employee) object(employer)
struct employee_employer
{
 std::string first;
 std::string last;
 std::string name;
};

The complete syntax of the db object pragma is shown below:

object(name [= alias] [join-type] [: join-condition])

The name part is a potentially qualified persistent class name that has been defined previously.

The optional alias part gives this object an alias. If provided, the alias is used in several contexts

instead of the object’s unqualified name. We will discuss aliases further as we cover each of these

contexts below. The optional join-type part specifies the way this object is associated. It can be

left, right, full, inner, and cross with left being the default. Finally, the optional

join-condition part provides the criteria which should be used to associate this object with any of

the previously associated objects or, as we will see in Section 10.4, "Mixed Views", tables. Note

that while the first associated object can have an alias, it cannot have a join type or condition.

161Revision 2.6, March 2025 C++ Object Persistence with ODB

10.1 Object Views

For each subsequent associated object the ODB compiler needs a join condition and there are

several ways to specify it. The easiest way is to omit it altogether and let the ODB compiler try to

come up with a join condition automatically. To do this the ODB compiler will examine each

previously associated object for object relationships (Chapter 6, "Relationships") that may exist

between these objects and the object being associated. If such a relationship exists and is unam­

biguous, that is there is only one such relationship, then the ODB compiler will automatically use

it to come up with the join condition for this object. This is exactly what happens in the previous

example: there is a single relationship (employee::employed_by) between the employee
and employer objects.

On the other hand, consider this view:

#pragma db view object(employee) object(country)
struct employee_residence
{
 std::string first;
 std::string last;
 std::string name;
};

While there is a relationship between country and employee, it is ambiguous. It can be

employee::residence_ (which is what we want) or it can be employee::national­
ity_ (which we don’t want). As result, when compiling the above view, the ODB compiler will

issue an error indicating an ambiguous object relationship. To resolve this ambiguity, we can

explicitly specify the object relationship that should be used to create the join condition as the

name of the corresponding data member. Here is how we can fix the employee_residence

view:

#pragma db view object(employee) object(country: employee::residence_)
struct employee_residence
{
 std::string first;
 std::string last;
 std::string name;
};

It is possible to associate the same object with a single view more than once using different join

conditions. However, in this case, we have to use aliases to assign different names for each asso­

ciation. For example:

#pragma db view object(employee) \
 object(country = res_country: employee::residence_) \
 object(country = nat_country: employee::nationality_)
struct employee_country
{
 ...
};

Revision 2.6, March 2025162 C++ Object Persistence with ODB

10.1 Object Views

Note that correctly defining data members in this view requires the use of a mechanism that we

haven’t yet covered. We will see how to do this shortly.

If we assign an alias to an object and refer to a data member of this object in one of the join

conditions, we have to use the unqualified alias name instead of the potentially qualified object

name. For example:

#pragma db view object(employee = ee) object(country: ee::residence_)
struct employee_residence
{
 ...
};

The last way to specify a join condition is to provide a custom query expression. This method is

primarily useful if you would like to associate an object using a condition that does not involve an

object relationship. Consider, for example, a modified employee object from the beginning of

the chapter with an added country of birth member. For one reason or another we have decided

not to use a relationship to the country object, as we have done with residence and nationality.

#pragma db object
class employee
{
 ...

 std::string birth_place_; // Country name.
};

If we now want to create a view that returns the birth country code for an employee, then we have

to use a custom join condition when associating the country object. For example:

#pragma db view object(employee) \
 object(country: employee::birth_place_ == country::name_)
struct employee_birth_code
{
 std::string first;
 std::string last;
 std::string code;
};

The syntax of the query expression in custom join conditions is the same as in the query facility

used to query the database for objects (Chapter 4, "Querying the Database") except that for query

members, instead of using odb::query<object>::member names, we refer directly to

object members.

Looking at the views we have defined so far, you may be wondering how the ODB compiler

knows which view data members correspond to which object data members. While the names are

similar, they are not exactly the same, for example employee_name::first and

163Revision 2.6, March 2025 C++ Object Persistence with ODB

10.1 Object Views

employee::first_.

As with join conditions, when it comes to associating data members, the ODB compiler tries to

do this automatically. It first searches all the associated objects for an exact name match. If no

match is found, then the ODB compiler compares the so-called public names. A public name of a

member is obtained by removing the common member name decorations, such as leading and

trailing underscores, the m_ prefix, etc. In both of these searches the ODB compiler also makes

sure that the types of the two members are the same or compatible.

If one of the above searches returned a match and it is unambiguous, that is there is only one

match, then the ODB compiler will automatically associate the two members. On the other hand,

if no match is found or the match is ambiguous, the ODB compiler will issue an error. To asso­

ciate two differently-named members or to resolve an ambiguity, we can explicitly specify the

member association using the db column pragma (Section 14.4.9, "column"). For example:

#pragma db view object(employee) object(employer)
struct employee_employer
{
 std::string first;
 std::string last;

 #pragma db column(employer::name_)
 std::string employer_name;
};

If an object data member specifies the SQL type with the db type pragma (Section 14.4.3,

"type"), then this type is also used for the associated view data members.

Note also that similar to join conditions, if we assign an alias to an object and refer to a data

member of this object in one of the db column pragmas, then we have to use the unqualified

alias name instead of the potentially qualified object name. For example:

#pragma db view object(employee) \
 object(country = res_country: employee::residence_) \
 object(country = nat_country: employee::nationality_)
struct employee_country
{
 std::string first;
 std::string last;

 #pragma db column(res_country::name_)
 std::string res_country_name;

 #pragma db column(nat_country::name_)
 std::string nat_country_name;
};

Revision 2.6, March 2025164 C++ Object Persistence with ODB

10.1 Object Views

Besides specifying just the object member, we can also specify a +-expression in the

db column pragma. A +-expression consists of string literals and object member references

connected using the + operator. It is primarily useful for defining aggregate views based on SQL

aggregate functions, for example:

#pragma db view object(employee)
struct employee_count
{
 #pragma db column("count(" + employee::id_ + ")")
 std::size_t count;
};

When querying the database for a view, we may want to provide additional query criteria based

on the objects associated with this view. To support this a view defines query members for all the

associated objects which allows us to refer to such objects’ members using the

odb::query<view>::member expressions. This is similar to how we can refer to object

members using the odb::query<object>::member expressions when querying the

database for an object. For example:

using query = odb::query<employee_count>;

transaction t (db.begin ());

// Find the number of employees with the Doe last name. Result of this
// aggregate query contains only one element so use the query_value()
// shortcut function.
//
employee_count ec (
 db.query_value<employee_count> (query::last == "Doe"));

cout << ec.count << endl;

t.commit ();

In the above query we used the last name data member from the associated employee object to

only count employees with the specific name.

When a view has only one associated object, the query members corresponding to this object are

defined directly in the odb::query<view> scope. For instance, in the above example, we

referred to the last name member as odb::query<employee_count>::last. However, if

a view has multiple associated objects, then query members corresponding to each such object are

defined in a nested scope named after the object. As an example, consider the

employee_employer view again:

165Revision 2.6, March 2025 C++ Object Persistence with ODB

10.1 Object Views

#pragma db view object(employee) object(employer)
struct employee_employer
{
 std::string first;
 std::string last;

 #pragma db column(employer::name_)
 std::string employer_name;
};

Now, to refer to the last name data member from the employee object we use the

odb::query<...>::employee::last expression. Similarly, to refer to the employer

name, we use the odb::query<...>::employer::name expression. For example:

using result = odb::result<employee_employer>;
using query = odb::query<employee_employer>;

transaction t (db.begin ());

result r (db.query<employee_employer> (
 query::employee::last == "Doe" &&
 query::employer::name == "Simple Tech Ltd"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cout << i->first << " " << i->last << " " << i->employer_name << endl;

t.commit ();

If we assign an alias to an object, then this alias is used to name the query members scope instead

of the object name. As an example, consider the employee_country view again:

#pragma db view object(employee) \
 object(country = res_country: employee::residence_) \
 object(country = nat_country: employee::nationality_)
struct employee_country
{
 ...
};

And a query which returns all the employees that have the same country of residence and nation­

ality:

using query = odb::query<employee_country>;
using result = odb::result<employee_country>;

transaction t (db.begin ());

result r (db.query<employee_country> (
 query::res_country::name == query::nat_country::name));

Revision 2.6, March 2025166 C++ Object Persistence with ODB

10.1 Object Views

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cout << i->first << " " << i->last << " " << i->res_country_name << endl;

t.commit ();

Note also that unlike object query members, view query members do no support referencing

members in related objects. For example, the following query is invalid:

using query = odb::query<employee_name>;
using result = odb::result<employee_name>;

transaction t (db.begin ());

result r (db.query<employee_name> (
 query::employed_by->name == "Simple Tech Ltd"));

t.commit ();

To get this behavior, we would instead need to associate the employer object with this view

and then use the query::employer::name expression instead of

query::employed_by->name.

As we have discussed above, if specified, an object alias is used instead of the object name in the

join condition, data member references in the db column pragma, as well as to name the query

members scope. The object alias is also used as a table name alias in the underlying SELECT

statement generated by the ODB compiler. Normally, you would not use the table alias directly

with object views. However, if for some reason you need to refer to a table column directly, for

example, as part of a native query expression, and you need to qualify the column with the table,

then you will need to use the table alias instead.

10.2 Object Loading Views

A special variant of object views is object loading views. Object loading views allow us to load

one or more complete objects instead of, or in addition to, a subset of data member. While we can

often achieve the same end result by calling database::load(), using a view has several

advantages.

If we need to load multiple objects, then using a view allows us to do this with a single SELECT

statement execution instead of one for each object that would be necessary in case of load(). A

view can also be useful for loading only a single object if the query criterion that we would like to

use involves other, potentially unrelated, objects. We will examine concrete examples of these

and other scenarios in the rest of this section.

167Revision 2.6, March 2025 C++ Object Persistence with ODB

10.2 Object Loading Views

To load a complete object as part of a view we use a data member of the pointer to object type,

just like for object relationships (Chapter 6, "Relationships"). As an example, here is how we can

load both the employee and employer objects from the previous section with a single state­

ment:

#pragma db view object(employee) object(employer)
struct employee_employer
{
 shared_ptr<employee> ee;
 shared_ptr<employer> er;
};

We use an object loading view just like any other view. In the result of a query, as we would

expect, the pointer data members point to the loaded objects. For example:

using query = odb::query<employee_employer>;

transaction t (db.begin ());

for (const employee_employer& r:
 db.query<employee_employer> (query::employee::age < 31))
{
 cout << r.ee->age () << " " << r.er->name () << endl;
}

t.commit ();

As another example, consider a query that loads the employer objects using some condition

based on its employees. For instance, we want to find all the employers that employ people over

65 years old. We can use this object loading view to implement such a query (notice the

distinct result modifier discussed later in Section 10.5, "View Query Conditions"):

#pragma db view object(employer) object(employee) query(distinct)
struct employer_view
{
 shared_ptr<employer> er;
};

And this is how we can use this view to find all the employers that employ seniors:

using query = odb::query<employer_view>;

db.query<employer_view> (query::employee::age > 65)

We can even use object loading views to load completely unrelated (from the ODB object rela­

tionships point of view) objects. For example, the following view will load all the employers that

are named the same as a country (notice the inner join type):

Revision 2.6, March 2025168 C++ Object Persistence with ODB

10.2 Object Loading Views

#pragma db view object(employer) \
 object(country inner: employer::name == country::name)
struct employer_named_country
{
 shared_ptr<employer> e;
 shared_ptr<country> c;
};

An object loading view can contain ordinary data members in addition to object pointers. For

example, if we are only interested in the country code in the above view, then we can reimple­

ment it like this:

#pragma db view object(employer) \
 object(country inner: employer::name == country::name)
struct employer_named_country
{
 shared_ptr<employer> e;
 std::string code;
};

Object loading views also have a few rules and restrictions. Firstly, the pointed-to object in the

data member must be associated with the view. Furthermore, if the associated object has an alias,

then the data member name must be the same as the alias (more precisely, the public name

derived from the data member must match the alias; which means we can use normal data

member decorations such as trailing underscores, etc., see the previous section for more informa­

tion on public names). The following view illustrates the use of aliases as data member names:

#pragma db view object(employee) \
 object(country = res: employee::residence_) \
 object(country = nat: employee::nationality_)
struct employee_country
{
 shared_ptr<country> res;
 shared_ptr<country> nat_;
};

Finally, the object pointers must be direct data members of the view. Using, for example, a

composite value that contains pointers as a view data member is not supported. Note also that

depending on the join type you are using, some of the resulting pointers might be NULL.

Up until now we have consistently used shared_ptr as an object pointer in our views. Can we

use other pointers, such as unique_ptr or raw pointers? To answer this question we first need

to discuss what happens with object pointers that may be inside objects that a view loads. As a

concrete example, let us revisit the employee_employer view from the beginning of this

section:

169Revision 2.6, March 2025 C++ Object Persistence with ODB

10.2 Object Loading Views

#pragma db view object(employee) object(employer)
struct employee_employer
{
 shared_ptr<employee> ee;
 shared_ptr<employer> er;
};

This view loads two objects: employee and employer. The employee object, however, also

contains a pointer to employer (see the employed_by_ data member). In fact, this is the

same object that the view loads since employer is associated with the view using this same

relationship (ODB automatically uses it since it is the only one). The correct result of loading

such a view is then clear: both er and er->employed_by_ must point to (or share) the same

instance.

Just like object loading via the database class functions, views achieve this correct behavior of

only loading a single instance of the same object with the help of session’s object cache (Chapter

11, "Session"). In fact, object loading views enforce this by throwing the session_required

exception if there is no current session and the view loads an object that is also indirectly loaded

by one of the other objects. The ODB compiler will also issue diagnostics if such an object has

session support disabled (Section 14.1.10, "session").

With this understanding we can now provide the correct implementation of our transaction that

uses the employee_employer view:

using query = odb::query<employee_employer>;

transaction t (db.begin ());
odb::session s;

for (const employee_employer& r:
 db.query<employee_employer> (query::employee::age < 31))
{
 assert (r.ee->employed_by_ == r.er);
 cout << r.ee->age () << " " << r.er->name () << endl;
}

t.commit ();

It might seem logical, then, to always load all the objects from all the eager relationships with the

view. After all, this will lead to them all being loaded with a single statement. While this is theo­

retically true, the reality is slightly more nuanced. If there is a high probability of the object

already have been loaded and sitting in the cache, then not loading the object as part of the view

(and therefore not fetching all its data from the database) might result in better performance.

Revision 2.6, March 2025170 C++ Object Persistence with ODB

10.2 Object Loading Views

Now we can also answer the question about which pointers we can use in object loading views.

From the above discussion it should be clear that if an object that we are loading is also part of a

relationship inside another object that we are loading, then we should use some form of a shared

ownership pointer. If, however, there are no relationships involved, as is the case, for example, in

our employer_named_country and employee_country views above, then we can use a

unique ownership pointer such as unique_ptr.

Note also that your choice of a pointer type can be limited by the "official" object pointer type

assigned to the object (Section 3.3, "Object and View Pointers"). For example, if the object

pointer type is shared_ptr, you will not be able to use unique_ptr to load such an object

into a view since initializing unique_ptr from shared_ptr would be a mistake.

Unless you want to perform your own object cleanup, raw object pointers in views are not partic­

ularly useful. They do have one special semantics, however: If a raw pointer is used as a view

member, then, before creating a new instance, the implementation will check if the member is

NULL. If it is not, then it is assumed to point to an existing instance and the implementation will

load the data into it instead of creating a new one. The primary use of this special functionality is

to implement by-value loading with the ability to detect NULL values.

To illustrate this functionality, consider the following view that load the employee’s residence

country by value:

#pragma db view object(employee) \
 object(country = res: employee::residence_) transient
struct employee_res_country
{
 using country_ptr = country*;

 #pragma db member(res_) virtual(country_ptr) get(&this.res) \
 set(this.res_null = ((?) == nullptr))

 country res;
 bool res_null;
};

Here we are using a virtual data member (Section 14.4.13, "virtual") to add an object pointer

member to the view. Its accessor expression returns the pointer to the res member so that the

implementation can load the data into it. The modifier expression checks the passed pointer to

initialize the NULL value indicator. Here, the two possible values that can be passed to the modi­

fier expression are the address of the res member that we returned earlier from the accessor and

NULL (strictly speaking, there is a third possibility: the address of an object that was found in the

session cache).

171Revision 2.6, March 2025 C++ Object Persistence with ODB

10.2 Object Loading Views

If we are not interested in the NULL indicator, then the above view can simplified to this:

#pragma db view object(employee) \
 object(country = res: employee::residence_) transient
struct employee_res_country
{
 using country_ptr = country*;

 #pragma db member(res_) virtual(country_ptr) get(&this.res) set()

 country res;
};

That is, we specify an empty modifier expression which leads to the value being ignored.

As another example of by-value loading, consider a view that allows us to load objects into exist­

ing instances that have been allocated outside the view:

#pragma db view object(employee) \
 object(country = res: employee::residence_) \
 object(country = nat: employee::nationality_)
struct employee_country
{
 employee_country (country& r, country& n): res (&r), nat (&n) {}

 country* res;
 country* nat;
};

And here is how we can use this view:

using result = odb::result<employee_country>;

transaction t (db.begin ());

result r (db.query<employee_country> (...);

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
 country res, nat;
 employee_country v (res, nat);
 i.load (v);

 if (v.res != nullptr)
 ... // Result is in res.

 if (v.nat != nullptr)

Revision 2.6, March 2025172 C++ Object Persistence with ODB

10.2 Object Loading Views

 ... // Result is in nat.
}

t.commit ();

As a final example of the by-value loading, consider the following view which implements a

slightly more advanced logic: if the object is already in the session cache, then it sets the pointer

data member in the view (er_p) to that. Otherwise, it loads the data into the by-value instance

(er). We can also check whether the pointer data member points to the instance to distinguish

between the two outcomes. And we can check it for nullptr to detect NULL values.

#pragma db view object(employer)
struct employer_view
{
 // Since we may be getting the pointer as both smart and raw, we
 // need to create a bit of support code to use in the modifier
 // expression.
 //
 void set_er (employer* p) {er_p = p;} // &er or NULL.
 void set_er (shared_ptr<employer> p) {er_p = p.get ();} // From cache.

 #pragma db get(&this.er) set(set_er(?))
 employer* er_p;

 #pragma db transient
 employer er;

 // Return-by-value support (e.g., query_value()).
 //
 employer_view (): er_p (0) {}
 employer_view (const employer_view& x)
 : er_p (x.er_p == &x.er ? &er : x.er_p), er (x.er) {}
};

We can use object loading views with polymorphic objects (Section 8.2, "Polymorphism Inheri­

tance"). Note, however, that when loading a derived object via the base pointer in a view, a sepa­

rate statement will be executed to load the dynamic part of the object. There is no support for

by-value loading for polymorphic objects.

We can also use object loading views with objects without id (Section 14.1.6, "no_id"). Note,

however, that for such objects, NULL values are not automatically detected (since there is no

primary key, which is otherwise guaranteed to be not NULL, there might not be a column on

which to base this detection). The workaround for this limitation is to load an otherwise not

NULL column next to the object which will serve as an indicator. For example:

173Revision 2.6, March 2025 C++ Object Persistence with ODB

10.2 Object Loading Views

#pragma db object no_id
class object
{
 ...

 int n; // NOT NULL
 std::string s;
};

#include <odb/nullable.hxx>

#pragma db view object(object)
struct view
{

 odb::nullable<int> n; // If ’n’ is NULL, then, logically, so is ’o’.
 unique_ptr<object> o;
};

10.3 Table Views

A table view is similar to an object view except that it is based on one or more database tables

instead of persistent objects. Table views are primarily useful when dealing with ad-hoc tables

that are not mapped to persistent classes.

To associate one or more tables with a view we use the db table pragma (Section 14.2.2,

"table"). To associate the second and subsequent tables we repeat the db table pragma for

each additional table. For example, the following view is based on the employee_extra
legacy table we have defined at the beginning of the chapter.

#pragma db view table("employee_extra")
struct employee_vacation
{
 #pragma db column("employee_id") type("INTEGER")
 unsigned long long employee_id;

 #pragma db column("vacation_days") type("INTEGER")
 unsigned short vacation_days;
};

Besides the table name in the db table pragma we also have to specify the column name for

each view data member. Note that unlike for object views, the ODB compiler does not try to

automatically come up with column names for table views. Furthermore, we cannot use refer­

ences to object members either, since there are no associated objects in table views. Instead, the

actual column name or column expression must be specified as a string literal. The column name

can also be qualified with a table name either in the "table.column" form or, if either a table

or a column name contains a period, in the "table"."column" form. The following example

Revision 2.6, March 2025174 C++ Object Persistence with ODB

10.3 Table Views

illustrates the use of a column expression:

#pragma db view table("employee_extra")
struct employee_max_vacation
{
 #pragma db column("max(vacation_days)") type("INTEGER")
 unsigned short max_vacation_days;
};

Both the associated table names and the column names can be qualified with a database schema,

for example:

#pragma db view table("hr.employee_extra")
struct employee_max_vacation
{
 #pragma db column("hr.employee_extra.vacation_days") type("INTEGER")
 unsigned short vacation_days;
};

For more information on database schemas and the format of the qualified names, refer to Section

14.1.8, "schema".

Note also that in the above examples we specified the SQL type for each of the columns to make

sure that the ODB compiler has knowledge of the actual types as specified in the database

schema. This is required to obtain correct and optimal generated code.

The complete syntax of the db table pragma is similar to the db object pragma and is

shown below:

table("name" [= "alias"] [join-type] [: join-condition])

The name part is a database table name. The optional alias part gives this table an alias. If

provided, the alias must be used instead of the table whenever a reference to a table is used.

Contexts where such a reference may be needed include the join condition (discussed below),

column names, and query expressions. The optional join-type part specifies the way this table is

associated. It can be left, right, full, inner, and cross with left being the default.

Finally, the optional join-condition part provides the criteria which should be used to associate

this table with any of the previously associated tables or, as we will see in Section 10.4, "Mixed

Views", objects. Note that while the first associated table can have an alias, it cannot have a join

type or condition.

Similar to object views, for each subsequent associated table the ODB compiler needs a join

condition. However, unlike for object views, for table views the ODB compiler does not try to

come up with one automatically. Furthermore, we cannot use references to object members corre­

sponding to object relationships either, since there are no associated objects in table views.

Instead, for each subsequent associated table, a join condition must be specified as a custom

175Revision 2.6, March 2025 C++ Object Persistence with ODB

10.3 Table Views

query expression. While the syntax of the query expression is the same as in the query facility

used to query the database for objects (Chapter 4, "Querying the Database"), a join condition for

a table is normally specified as a single string literal containing a native SQL query expression.

As an example of a multi-table view, consider the employee_health table that we define in

addition to employee_extra:

CREATE TABLE employee_health(
 employee_id INTEGER NOT NULL,
 sick_leave_days INTEGER NOT NULL)

Given these two tables we can now define a view that returns both the vacation and sick leave

information for each employee:

#pragma db view table("employee_extra" = "extra") \
 table("employee_health" = "health": \
 "extra.employee_id = health.employee_id")
struct employee_leave
{
 #pragma db column("extra.employee_id") type("INTEGER")
 unsigned long long employee_id;

 #pragma db column("vacation_days") type("INTEGER")
 unsigned short vacation_days;

 #pragma db column("sick_leave_days") type("INTEGER")
 unsigned short sick_leave_days;
};

Querying the database for a table view is the same as for an object view except that we can only

use native query expressions. For example:

using query = odb::query<employee_leave>;
using result = odb::result<employee_leave>;

transaction t (db.begin ());

unsigned short v_min = ...
unsigned short l_min = ...

result r (db.query<employee_leave> (
 "vacation_days > " + query::_val(v_min) + "AND" +
 "sick_leave_days > " + query::_val(l_min)));

t.commit ();

Revision 2.6, March 2025176 C++ Object Persistence with ODB

10.3 Table Views

10.4 Mixed Views

A mixed view has both associated objects and tables. As a first example of a mixed view, let us

improve employee_vacation from the previous section to return the employee’s first and

last names instead of the employee id. To achieve this we have to associate both the employee
object and the employee_extra table with the view:

#pragma db view object(employee) \
 table("employee_extra" = "extra": "extra.employee_id = " + employee::id_)
struct employee_vacation
{
 std::string first;
 std::string last;

 #pragma db column("extra.vacation_days") type("INTEGER")
 unsigned short vacation_days;
};

When querying the database for a mixed view, we can use query members for the parts of the

query expression that involves object members but have to fall back to using the native syntax for

the parts that involve table columns. For example:

using query = odb::query<employee_vacation>;
using result = odb::result<employee_vacation>;

transaction t (db.begin ());

result r (db.query<employee_vacation> (
 (query::last == "Doe") + "AND extra.vacation_days <> 0"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cout << i->first << " " << i->last << " " << i->vacation_days << endl;

t.commit ();

As another example, consider a more advanced view that associates two objects via a legacy

table. This view allows us to find the previous employer name for each employee:

#pragma db view object(employee) \
 table("employee_extra" = "extra": "extra.employee_id = " + employee::id_) \
 object(employer: "extra.previous_employer_id = " + employer::id_)
struct employee_prev_employer
{
 std::string first;
 std::string last;

 // If previous_employer_id is NULL, then the name will be NULL as well.
 // We use the odb::nullable wrapper to handle this.

177Revision 2.6, March 2025 C++ Object Persistence with ODB

10.4 Mixed Views

 //
 #pragma db column(employer::name_)
 odb::nullable<std::string> prev_employer_name;
};

10.5 View Query Conditions

Object, table, and mixed views can also specify an optional query condition that should be used

whenever the database is queried for this view. To specify a query condition we use the

db query pragma (Section 14.2.3, "query").

As an example, consider a view that returns some information about all the employees that are

over a predefined retirement age. One way to implement this would be to define a standard object

view as we have done in the previous sections and then use a query like this:

result r (db.query<employee_retirement> (query::age > 50));

The problem with the above approach is that we have to keep repeating the query::age >
50 expression every time we execute the query, even though this expression always stays the

same. View query conditions allow us to solve this problem. For example:

#pragma db view object(employee) query(employee::age > 50)
struct employee_retirement
{
 std::string first;
 std::string last;
 unsigned short age;
};

With this improvement we can rewrite our query like this:

result r (db.query<employee_retirement> ());

But what if we may also need to restrict the result set based on some varying criteria, such as the

employee’s last name? Or, in other words, we may need to combine a constant query expression

specified in the db query pragma with the varying expression specified at the query execution

time. To allow this, the db query pragma syntax supports the use of the special (?) place­

holder that indicates the position in the constant query expression where the runtime expression

should be inserted. For example:

#pragma db view object(employee) query(employee::age > 50 && (?))
struct employee_retirement
{
 std::string first;
 std::string last;
 unsigned short name;
};

Revision 2.6, March 2025178 C++ Object Persistence with ODB

10.5 View Query Conditions

With this change we can now use additional query criteria in our view:

result r (db.query<employee_retirement> (query::last == "Doe"));

The syntax of the expression in a query condition is the same as in the query facility used to

query the database for objects (Chapter 4, "Querying the Database") except for two differences.

Firstly, for query members, instead of using odb::query<object>::member names, we

refer directly to object members, using the object alias instead of the object name if an alias was

assigned. Secondly, query conditions support the special (?) placeholder which can be used both

in the C++-integrated query expressions as was shown above and in native SQL expressions

specified as string literals. The following view is an example of the latter case:

#pragma db view table("employee_extra") \
 query("vacation_days <> 0 AND (?)")
struct employee_vacation
{
 ...
};

Another common use case for query conditions are views with the ORDER BY or GROUP BY
clause. Such clauses are normally present in the same form in every query involving such views.

As an example, consider an aggregate view which calculate the minimum and maximum ages of

employees for each employer:

#pragma db view object(employee) object(employer) \
 query((?) + "GROUP BY" + employer::name_)
struct employer_age
{
 #pragma db column(employer::name_)
 std::string employer_name;

 #pragma db column("min(" + employee::age_ + ")")
 unsigned short min_age;

 #pragma db column("max(" + employee::age_ + ")")
 unsigned short max_age;
};

The query condition can be optionally followed (or replaced, if no constant query expression is

needed) by one or more result modifiers. Currently supported result modifiers are distinct
(which is translated to SELECT DISTINCT) and for_update (which is translated to FOR
UPDATE or equivalent for database systems that support it). As an example, consider a view that

allows us to get some information about employers ordered by the object id and without any

duplicates:

179Revision 2.6, March 2025 C++ Object Persistence with ODB

10.5 View Query Conditions

#pragma db view object(employer) object(employee) \
 query((?) + "ORDER BY" + employer::name_, distinct)
struct employer_info
{
 ...
};

If we don’t require ordering, then this view can be re-implemented like this:

#pragma db view object(employer) object(employee) query(distinct)
struct employer_info
{
 ...
};

10.6 Native Views

The last kind of view supported by ODB is a native view. Native views are a low-level mecha­

nism for capturing results of native SQL queries, stored procedure calls, etc. Native views don’t

have associated tables or objects. Instead, we use the db query pragma to specify the native

SQL query, which should normally include the select-list and, if applicable, the from-list. For

example, here is how we can re-implement the employee_vacation table view from Section

10.3 above as a native view:

#pragma db view query("SELECT employee_id, vacation_days " \
 "FROM employee_extra")
struct employee_vacation
{
 #pragma db type("INTEGER")
 unsigned long long employee_id;

 #pragma db type("INTEGER")
 unsigned short vacation_days;
};

In native views the columns in the query select-list are associated with the view data members in

the order specified. That is, the first column is stored in the first member, the second column —

in the second member, and so on. The ODB compiler does not perform any error checking in this

association. As a result you must make sure that the number and order of columns in the query

select-list match the number and order of data members in the view. This is also the reason why

we are not required to provide the column name for each data member in native views, as is the

case for object and table views.

Note also that while it is always possible to implement a table view as a native view, the table

views must be preferred since they are safer. In a native view, if you add, remove, or rearrange

data members without updating the column list in the query, or vice versa, at best, this will result

in a runtime error. In contrast, in a table view such changes will result in the query being auto­

Revision 2.6, March 2025180 C++ Object Persistence with ODB

10.6 Native Views

matically updated.

Similar to object and table views, the query specified for a native view can contain the special

(?) placeholder which is replaced with the query expression specified at the query execution

time. If the native query does not contain a placeholder, as in the example above, then any query

expression specified at the query execution time is appended to the query text along with the

WHERE keyword, if required. The following example shows the usage of the placeholder:

#pragma db view query("SELECT employee_id, vacation_days " \
 "FROM employee_extra " \
 "WHERE vacation_days <> 0 AND (?)")
struct employee_vacation
{
 ...
};

As another example, consider a view that returns the next value of a database sequence:

#pragma db view query("SELECT nextval(’my_seq’)")
struct sequence_value
{
 unsigned long long value;
};

While this implementation can be acceptable in some cases, it has a number of drawbacks.

Firstly, the name of the sequence is fixed in the view, which means if we have a second sequence,

we will have to define another, almost identical view. Similarly, the operation that we perform on

the sequence is also fixed. In some situations, instead of returning the next value, we may need

the last value.

Note that we cannot use the placeholder mechanism to resolve these problems since placeholders

can only be used in the WHERE, GROUP BY, and similar clauses. In other words, the following

won’t work:

#pragma db view query("SELECT nextval(’(?)’)")
struct sequence_value
{
 unsigned long long value;
};

result r (db.query<sequence_value> ("my_seq"));

To support these kinds of use cases, ODB allows us to specify the complete query for a native

view at runtime rather than at the view definition. To indicate that a native view has a runtime

query, we can either specify the empty db query pragma or omit the pragma altogether. For

example:

181Revision 2.6, March 2025 C++ Object Persistence with ODB

10.6 Native Views

#pragma db view
struct sequence_value
{
 unsigned long long value;
};

Given this view, we can perform the following queries:

using query = odb::query<sequence_value>;
using result = odb::result<sequence_value>;

string seq_name = ...

result l (db.query<sequence_value> (
 "SELECT lastval(’" + seq_name + "’)"));

result n (db.query<sequence_value> (
 "SELECT nextval(’" + seq_name + "’)"));

Native views can also be used to call and handle results of stored procedures. The semantics and

limitations of stored procedures vary greatly between database systems while some do not

support this functionality at all. As a result, support for calling stored procedures using native

views is described for each database system in Part II, "Database Systems".

10.7 Other View Features and Limitations

Views cannot be derived from other views. However, you can derive a view from a transient C++

class. View data members cannot be object pointers. If you need to access data from a pointed-to

object, then you will need to associate such an object with the view. Similarly, view data

members cannot be containers. These two limitations also apply to composite value types that

contain object pointers or containers. Such composite values cannot be used as view data

members.

On the other hand, composite values that do not contain object pointers or containers can be used

in views. As an example, consider a modified version of the employee persistent class that

stores a person’s name as a composite value:

#pragma db value
class person_name
{
 std::string first_;
 std::string last_;
};

#pragma db object
class employee
{
 ...

Revision 2.6, March 2025182 C++ Object Persistence with ODB

10.7 Other View Features and Limitations

 person_name name_;

 ...
};

Given this change, we can re-implement the employee_name view like this:

#pragma db view object(employee)
struct employee_name
{
 person_name name;
};

It is also possible to extract some or all of the nested members of a composite value into individ­

ual view data members. Here is how we could have defined the employee_name view if we

wanted to keep its original structure:

#pragma db view object(employee)
struct employee_name
{
 #pragma db column(employee::name.first_)
 std::string first;

 #pragma db column(employee::name.last_)
 std::string last;
};

183Revision 2.6, March 2025 C++ Object Persistence with ODB

10.7 Other View Features and Limitations

11 Session

A session is an application’s unit of work that may encompass several database transactions. In

this version of ODB a session is just an object cache. In future versions it may provide additional

functionality, such as delayed database operations and automatic object state change tracking. As

discussed later in Section 11.2, "Custom Sessions", it is also possible to provide a custom session

implementation that provides these or other features.

Session support is optional and can be enabled or disabled on the per object basis using the

db session pragma, for example:

#pragma db object session
class person
{
 ...
};

We can also enable or disable session support for a group of objects at the namespace level:

#pragma db namespace session
namespace accounting
{
 #pragma db object // Session support is enabled.
 class employee
 {
 ...
 };

 #pragma db object session(false) // Session support is disabled.
 class employer
 {
 ...
 };
}

Finally, we can pass the --generate-session ODB compiler option to enable session

support by default. With this option session support will be enabled for all the persistent classes

except those for which it was explicitly disabled using the db session. An alternative to this

method with the same effect is to enable session support for the global namespace:

#pragma db namespace() session

Each thread of execution in an application can have only one active session at a time. A session is

started by creating an instance of the odb::session class and is automatically terminated

when this instance is destroyed. You will need to include the <odb/session.hxx> header

file to make this class available in your application. For example:

Revision 2.6, March 2025184 C++ Object Persistence with ODB

11 Session

#include <odb/database.hxx>
#include <odb/session.hxx>
#include <odb/transaction.hxx>

using namespace odb::core;

{
 session s;

 // First transaction.
 //
 {
 transaction t (db.begin ());
 ...
 t.commit ();
 }

 // Second transaction.
 //
 {
 transaction t (db.begin ());
 ...
 t.commit ();
 }

 // Session ’s’ is terminated here.
}

The session class has the following interface:

namespace odb
{
 class session
 {
 public:
 session (bool make_current = true);
 ~session ();

 // Copying or assignment of sessions is not supported.
 //
 private:
 session (const session&);
 session& operator= (const session&);

 // Current session interface.
 //
 public:
 static session&
 current ();

 static bool

185Revision 2.6, March 2025 C++ Object Persistence with ODB

11 Session

 has_current ();

 static void
 current (session&);

 static void
 reset_current ();

 static session*
 current_pointer ();

 static void
 current_pointer (session*);

 // Object cache interface.
 //
 public:
 template <typename T>
 struct cache_position {...};

 template <typename T>
 cache_position<T>
 cache_insert (database&,
 const object_traits<T>::id_type&,
 const object_traits<T>::pointer_type&);

 template <typename T>
 object_traits<T>::pointer_type
 cache_find (database&, const object_traits<T>::id_type&) const;

 template <typename T>
 void
 cache_erase (const cache_position<T>&);

 template <typename T>
 void
 cache_erase (database&, const object_traits<T>::id_type&);
 };
}

The session constructor creates a new session and, if the make_current argument is true,

sets it as a current session for this thread. If we try to make a session current while there is

already another session in effect for this thread, then the constructor throws the

odb::already_in_session exception. The destructor clears the current session for this

thread if this session is the current one.

The static current() accessor returns the currently active session for this thread. If there is no

active session, this function throws the odb::not_in_session exception. We can check

whether there is a session in effect in this thread using the has_current() static function.

Revision 2.6, March 2025186 C++ Object Persistence with ODB

11 Session

The static current() modifier allows us to set the current session for this thread. The

reset_current() static function clears the current session. These two functions allow for

more advanced use cases, such as multiplexing two or more sessions on the same thread.

The static current_pointer() overloaded functions provided the same functionality but

using pointers. Specifically, the current_pointer() accessor can be used to test whether

there is a current session and get a pointer to it all with a single call.

We normally don’t use the object cache interface directly. However, it could be useful in some

cases, for example, to find out whether an object has already been loaded. Note that when calling

cache_insert(), cache_find(), or the second version of cache_erase(), you need

to specify the template argument (object type) explicitly. It is also possible to access the underly­

ing cache data structures directly. This can be useful if, for example, you want to iterate over the

objects store in the cache. Refer to the ODB runtime header files for more details on this direct

access.

11.1 Object Cache

A session is an object cache. Every time a session-enabled object is made persistent by calling the

database::persist() function (Section 3.8, "Making Objects Persistent"), loaded by

calling the database::load() or database::find() function (the pointer-returning

overloads only; Section 3.9, "Loading Persistent Objects"), or loaded by iterating over a query

result (Section 4.4, "Query Result"), the pointer to the persistent object, in the form of the canoni­

cal object pointer (Section 3.3, "Object and View Pointers"), is stored in the session. For as long

as the session is in effect, any subsequent calls to load the same object will return the cached

instance. When an object’s state is deleted from the database with the database::erase()

function (Section 3.11, "Deleting Persistent Objects"), the cached object pointer is removed from

the session. For example:

shared_ptr<person> p (new person ("John", "Doe"));

session s;
transaction t (db.begin ());

unsigned long long id (db.persist (p)); // p is cached in s.
shared_ptr<person> p1 (db.load<person> (id)); // p1 same as p.

t.commit ();

The per-object caching policies depend on the object pointer kind (Section 6.5, "Using Custom

Smart Pointers"). Objects with a unique pointer, such as std::auto_ptr or

std::unique_ptr, as an object pointer are never cached since it is not possible to have two

such pointers pointing to the same object. When an object is persisted via a pointer or loaded as a

dynamically allocated instance, objects with both raw and shared pointers as object pointers are

cached. If an object is persisted as a reference or loaded into a pre-allocated instance, the object is

187Revision 2.6, March 2025 C++ Object Persistence with ODB

11.1 Object Cache

only cached if its object pointer is a raw pointer.

Also note that when we persist an object as a constant reference or constant pointer, the session

caches such an object as unrestricted (non-const). This can lead to undefined behavior if the

object being persisted was actually created as const and is later found in the session cache and

used as non-const. As a result, when using sessions, it is recommended that all persistent

objects be created as non-const instances. The following code fragment illustrates this point:

void save (database& db, shared_ptr<const person> p)
{
 transaction t (db.begin ());
 db.persist (p); // Persisted as const pointer.
 t.commit ();
}

session s;

shared_ptr<const person> p1 (new const person ("John", "Doe"));
unsigned long long id1 (save (db, p1)); // p1 is cached in s as non-const.

{
 transaction t (db.begin ());
 shared_ptr<person> p (db.load<person> (id1)); // p == p1
 p->age (30); // Undefined behavior since p1 was created const.
 t.commit ();
}

shared_ptr<const person> p2 (new person ("Jane", "Doe"));
unsigned long long id2 (save (db, p2)); // p2 is cached in s as non-const.

{
 transaction t (db.begin ());
 shared_ptr<person> p (db.load<person> (id2)); // p == p2
 p->age (30); // Ok, since p2 was not created const.
 t.commit ();
}

11.2 Custom Sessions

ODB can use a custom session implementation instead of the default odb::session. There

could be multiple reasons for an application to provide its own session. For example, the applica­

tion may already include a notion of an object cache or registry which ODB can re-use. A custom

session can also provide additional functionality, such as automatic change tracking, delayed

database operations, or object eviction. Finally, the session-per-thread approach used by

odb::session may not be suitable for all applications. For instance, some may need a

thread-safe session that can be shared among multiple threads. For an example of a custom

session that implements automatic change tracking by keeping original copies of the objects, refer

Revision 2.6, March 2025188 C++ Object Persistence with ODB

11.2 Custom Sessions

to the common/session/custom test in the odb-tests package.

To use a custom session we need to specify its type with the --session-type ODB compiler

command line option. We also need to include its definition into the generated header file. This

can be achieved with the --hxx-prologue option. For example, if our custom session is

called app::session and is defined in the app/session.hxx header file, then the corre­

sponding ODB compiler options would look like this:

odb --hxx-prologue "#include \"app/session.hxx\"" \
--session-type ::app::session ...

A custom session should provide the following interface:

class custom_session
{
public:
 static bool
 _has_cache ();

 // Cache management functions.
 //
 template <typename T>
 struct cache_position
 {
 ...
 };

 template <typename T>
 static cache_position<T>
 _cache_insert (odb::database&,
 const typename odb::object_traits<T>::id_type&,
 const typename odb::object_traits<T>::pointer_type&);

 template <typename T>
 static typename odb::object_traits<T>::pointer_type
 _cache_find (odb::database&,
 const typename odb::object_traits<T>::id_type&);

 template <typename T>
 static void
 _cache_erase (const cache_position<T>&);

 // Notification functions.
 //
 template <typename T>
 static void
 _cache_persist (const cache_position<T>&);

 template <typename T>
 static void

189Revision 2.6, March 2025 C++ Object Persistence with ODB

11.2 Custom Sessions

 _cache_load (const cache_position<T>&);

 template <typename T>
 static void
 _cache_update (odb::database&, const T& obj);

 template <typename T>
 static void
 _cache_erase (odb::database&,
 const typename odb::object_traits<T>::id_type&);
};

The _has_cache() function shall return true if the object cache is in effect in the current

thread.

The cache_position class template represents a position in the cache of the inserted object.

It should be default and copy-constructible as well as copy-assignable. The default constructor

shall create a special empty/NULL position. A call of any of the cache management or notification

functions with such an empty/NULL position shall be ignored.

The _cache_insert() function shall add the object into the object cache and return its posi­

tion. The _cache_find() function looks an object up in the object cache given its id. It

returns a NULL pointer if the object is not found. The _cache_erase() cache management

function shall remove the object from the cache. It is called if the database operation that caused

the object to be inserted (for example, load) failed. Note also that after insertion the object state is

undefined. You can only access the object state (for example, make a copy or clear a flag) from

one of the notification functions discussed below.

The notification functions are called after an object has been persisted, loaded, updated, or erased,

respectively. If your session implementation does not need some of the notifications, you still

have to provide their functions, however, you can leave their implementations empty.

Notice also that all the cache management and notification functions are static. This is done in

order to allow for a custom notion of a current session. Normally, the first step a non-empty

implementation will perform is lookup the current session.

Revision 2.6, March 2025190 C++ Object Persistence with ODB

11.2 Custom Sessions

12 Optimistic Concurrency

The ODB transaction model (Section 3.5, "Transactions") guarantees consistency as long as we

perform all the database operations corresponding to a specific application transaction in a single

database transaction. That is, if we load an object within a database transaction and update it in

the same transaction, then we are guaranteed that the object state that we are updating in the

database is exactly the same as the state we have loaded. In other words, it is impossible for

another process or thread to modify the object state in the database between these load and update

operations.

In this chapter we use the term application transaction to refer to a set of operations on persistent

objects that an application needs to perform in order to implement some application-specific

functionality. The term database transaction refers to the set of database operations performed

between the ODB begin() and commit() calls. Up until now we have treated application

transactions and database transactions as essentially the same thing.

While this model is easy to understand and straightforward to use, it may not be suitable for

applications that have long application transactions. The canonical example of such a situation is

an application transaction that requires user input between loading an object and updating it. Such

an operation may take an arbitrary long time to complete and performing it within a single

database transaction will consume database resources as well as prevent other processes/threads

from updating the object for too long.

The solution to this problem is to break up the long-lived application transaction into several

short-lived database transactions. In our example that would mean loading the object in one

database transaction, waiting for user input, and then updating the object in another database

transaction. For example:

unsigned long long id = ...;
person p;

{
 transaction t (db.begin ());
 db.load (id, p);
 t.commit ();
}

cerr << "enter age for " << p.first () << " " << p.last () << endl;
unsigned short age;
cin >> age;
p.age (age);

{

191Revision 2.6, March 2025 C++ Object Persistence with ODB

12 Optimistic Concurrency

 transaction t (db.begin ());
 db.update (p);
 t.commit ();
}

This approach works well if we only have one process/thread that can ever update the object.

However, if we have multiple processes/threads modifying the same object, then this approach

does not guarantee consistency anymore. Consider what happens in the above example if another

process updates the person’s last name while we are waiting for the user input. Since we loaded

the object before this change occured, our version of the person’s data will still have the old

name. Once we receive the input from the user, we go ahead and update the object, overwriting

both the old age with the new one (correct) and the new name with the old one (incorrect).

While there is no way to restore the consistency guarantee in an application transaction that

consists of multiple database transactions, ODB provides a mechanism, called optimistic concur­

rency, that allows applications to detect and potentially recover from such inconsistencies.

In essence, the optimistic concurrency model detects mismatches between the current object state

in the database and the state when it was loaded into the application memory. Such a mismatch

would mean that the object was changed by another process or thread. There are several ways to

implement such state mismatch detection. Currently, ODB uses object versioning while other

methods, such as timestamps, may be supported in the future.

To declare a persistent class with the optimistic concurrency model we use the optimistic
pragma (Section 14.1.5, "optimistic"). We also use the version pragma (Section 14.4.16,

"version") to specify which data member will store the object version. For example:

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 unsigned long long version_;
};

The version data member is managed by ODB. It is initialized to 1 when the object is made

persistent and incremented by 1 with each update. The 0 version value is not used by ODB and

the application can use it as a special value, for example, to indicate that the object is transient.

Note that for optimistic concurrency to function properly, the application should not modify the

version member after making the object persistent or loading it from the database and until delet­

ing the state of this object from the database. To avoid any accidental modifications to the version

member, we can declare it const, for example:

Revision 2.6, March 2025192 C++ Object Persistence with ODB

12 Optimistic Concurrency

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 const unsigned long long version_;
};

When we call the database::update() function (Section 3.10, "Updating Persistent

Objects") and pass an object that has an outdated state, the odb::object_changed exception

is thrown. At this point the application has two recovery options: it can abort and potentially

restart the application transaction or it can reload the new object state from the database, re-apply

or merge the changes, and call update() again. Note that aborting an application transaction

that performs updates in multiple database transactions may require reverting changes that have

already been committed to the database. As a result, this strategy works best if all the updates are

performed in the last database transaction of the application transaction. This way the changes

can be reverted by simply rolling back this last database transaction.

The following example shows how we can reimplement the above transaction using the second

recovery option:

unsigned long long id = ...;
person p;

{
 transaction t (db.begin ());
 db.load (id, p);
 t.commit ();
}

cerr << "enter age for " << p.first () << " " << p.last () << endl;
unsigned short age;
cin >> age;
p.age (age);

{
 transaction t (db.begin ());

 try
 {
 db.update (p);
 }
 catch (const object_changed&)
 {
 db.reload (p);
 p.age (age);
 db.update (p);

193Revision 2.6, March 2025 C++ Object Persistence with ODB

12 Optimistic Concurrency

 }

 t.commit ();
}

An important point to note in the above code fragment is that the second update() call cannot

throw the object_changed exception because we are reloading the state of the object and

updating it within the same database transaction.

Depending on the recovery strategy employed by the application, an application transaction with

a failed update can be significantly more expensive than a successful one. As a result, optimistic

concurrency works best for situations with low to medium contention levels where the majority

of the application transactions complete without update conflicts. This is also the reason why this

concurrency model is called optimistic.

In addition to updates, ODB also performs state mismatch detection when we are deleting an

object from the database (Section 3.11, "Deleting Persistent Objects"). To understand why this

can be important, consider the following application transaction:

unsigned long long id = ...;
person p;

{
 transaction t (db.begin ());
 db.load (id, p);
 t.commit ();
}

string answer;
cerr << "age is " << p.age () << ", delete?" << endl;
getline (cin, answer);

if (answer == "yes")
{
 transaction t (db.begin ());
 db.erase (p);
 t.commit ();
}

Consider again what happens if another process or thread updates the object by changing the

person’s age while we are waiting for the user input. In this case, the user makes the decision

based on a certain age while we may delete (or not delete) an object that has a completely differ­

ent age. Here is how we can fix this problem using optimistic concurrency:

unsigned long long id = ...;
person p;

{

Revision 2.6, March 2025194 C++ Object Persistence with ODB

12 Optimistic Concurrency

 transaction t (db.begin ());
 db.load (id, p);
 t.commit ();
}

string answer;
for (bool done (false); !done;)
{
 if (answer.empty ())
 cerr << "age is " << p.age () << ", delete?" << endl;
 else
 cerr << "age changed to " << p.age () << ", still delete?" << endl;

 getline (cin, answer);

 if (answer == "yes")
 {
 transaction t (db.begin ());

 try
 {
 db.erase (p);
 done = true;
 }
 catch (const object_changed&)
 {
 db.reload (p);
 }

 t.commit ();
 }
 else
 done = true;
}

Note that state mismatch detection is performed only if we delete an object by passing the object

instance to the erase() function. If we want to delete an object with the optimistic concurrency

model regardless of its state, then we need to use the erase() function that deletes an object

given its id, for example:

{
 transaction t (db.begin ());
 db.erase (p.id ());
 t.commit ();
}

Finally, note that for persistent classes with the optimistic concurrency model both the

update() function as well as the erase() function that accepts an object instance as its argu­

ment no longer throw the object_not_persistent exception if there is no such object in

the database. Instead, this condition is treated as a change of object state and the

195Revision 2.6, March 2025 C++ Object Persistence with ODB

12 Optimistic Concurrency

object_changed exception is thrown instead.

For complete sample code that shows how to use optimistic concurrency, refer to the opti­
mistic example in the odb-examples package.

Revision 2.6, March 2025196 C++ Object Persistence with ODB

12 Optimistic Concurrency

13 Database Schema Evolution

When we add new persistent classes or change the existing ones, for example, by adding or delet­

ing data members, the database schema necessary to store the new object model changes as well.

At the same time, we may have existing databases that contain existing data. If new versions of

your application don’t need to handle old databases, then the schema creating functionality is all

that you need. However, most applications will need to work with data stored by older versions of

the same application.

We will call database schema evolution the overall task of updating the database to match the

changes in the object model. Schema evolution usually consists of two sub-tasks: schema migra­

tion and data migration. Schema migration modifies the database schema to correspond to the

current object model. In a relational database, this, for example, could require adding or dropping

tables and columns. The data migration task involves converting the data stored in the existing

database from the old format to the new one.

If performed manually, database schema evolution is a tedious and error-prone task. As a result,

ODB provides comprehensive support for automated or, more precisely, semi-automated schema

evolution. Specifically, ODB does fully-automatic schema migration and provides facilities to

help you with data migration.

The topic of schema evolution is a complex and sensitive issue since normally there would be

valuable, production data at stake. As a result, the approach taken by ODB is to provide simple

and bullet-proof elementary building blocks (or migration steps) that we can understand and trust.

Using these elementary blocks we can then implement more complex migration scenarios. In

particular, ODB does not try to handle data migration automatically since in most cases this

requires understanding of application-specific semantics. In other words, there is no magic.

There are two general approaches to working with older data: the application can either convert it

to correspond to the new format or it can be made capable of working with multiple versions of

this format. There is also a hybrid approach where the application may convert the data to the

new format gradually as part of its normal functionality. ODB is capable of handling all these

scenarios. That is, there is support for working with older models without performing any migra­

tion (schema or data). Alternatively, we can migrate the schema after which we have the choice

of either also immediately migrating the data (immediate data migration) or doing it gradually

(gradual data migration).

Schema evolution is already a complex task and we should not unnecessarily use a more complex

approach where a simpler one would be sufficient. From the above, the simplest approach is the

immediate schema migration that does not require any data migration. An example of such a

change would be adding a new data member with the default value (Section 14.3.4, "default").

This case ODB can handle completely automatically.

197Revision 2.6, March 2025 C++ Object Persistence with ODB

13 Database Schema Evolution

If we do require data migration, then the next simplest approach is the immediate schema and

data migration. Here we have to write custom migration code. However, it is separate from the

rest of the core application logic and is executed at a well defined point (database migration). In

other words, the core application logic need not be aware of older model versions. The potential

drawback of this approach is performance. It may take a lot of resources and/or time to convert

all the data upfront.

If the immediate migration is not possible, then the next option is the immediate schema migra­

tion followed by the gradual data migration. With this approach, both old and new data must

co-exist in the new database. We also have to change the application logic to both account for

different sources of the same data (for example, when either an old or new version of the object is

loaded) as well as migrate the data when appropriate (for example, when the old version of the

object is updated). At some point, usually when the majority of the data has been converted,

gradual migrations are terminated with an immediate migration.

The most complex approach is working with multiple versions of the database without perform­

ing any migrations, schema or data. ODB does provide support for implementing this approach

(Section 13.4, "Soft Object Model Changes"), however we will not cover it any further in this

chapter. Generally, this will require embedding knowledge about each version into the core appli­

cation logic which makes it hard to maintain for any non-trivial object model.

Note also that when it comes to data migration, we can use the immediate variant for some

changes and gradual for others. We will discuss various migration scenarios in greater detail in

section Section 13.3, "Data Migration".

13.1 Object Model Version and Changelog

To enable schema evolution support in ODB we need to specify the object model version, or,

more precisely, two versions. The first is the base model version. It is the lowest version from

which we will be able to migrate. The second version is the current model version. In ODB we

can migrate from multiple previous versions by successively migrating from one to the next until

we reach the current version. We use the db model version pragma to specify both the base

and current versions.

When we enable schema evolution for the first time, our base and current versions will be the

same, for example:

#pragma db model version(1, 1)

Once we release our application, its users may create databases with the schema corresponding to

this version of the object model. This means that if we make any modifications to our object

model that also change the schema, then we will need to be able to migrate the old databases to

this new schema. As a result, before making any new changes after a release, we increment the

current version, for example:

Revision 2.6, March 2025198 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

#pragma db model version(1, 2)

To put this another way, we can stay on the same version during development and keep adding

new changes to it. But once we release it, any new changes to the object model will have to be

done in a new version.

It is easy to forget to increment the version before making new changes to the object model. To

help solve this problem, the db model version pragma accepts a third optional argument

that specify whether the current version is open or closed for changes. For example:

#pragma db model version(1, 2, open) // Can add new changes to
 // version 2.

#pragma db model version(1, 2, closed) // Can no longer add new
 // changes to version 2.

If the current version is closed, ODB will refuse to accept any new schema changes. In this situa­

tion you would normally increment the current version and mark it as open or you could re-open

the existing version if, for example, you need to fix something. Note, however, that re-opening

versions that have been released will most likely result in migration malfunctions. By default the

version is open.

Normally, an application will have a range of older database versions from which it is able to

migrate. When we change this range by removing support for older versions, we also need to

adjust the base model version. This will make sure that ODB does not keep unnecessary informa­

tion around.

A model version (both base and current) is a 64-bit unsigned integer

(unsigned long long). 0 is reserved to signify special situations, such as the lack of

schema in the database. Other than that, we can use any values as versions as long as they are

monotonically increasing. In particular, we don’t have to start with version 1 and can increase the

versions by any increment.

One versioning approach is to use an independent object model version by starting from version

1 and also incrementing by 1. The alternative is to make the model version correspond to the

application version. For example, if our application is using the X.Y.Z version format, then we

could encode it as a hexadecimal number and use that as our model version, for example:

#pragma db model version(0x020000, 0x020306) // 2.0.0-2.3.6

Most real-world object models will be spread over multiple header files and it will be burden­

some to repeat the db model version pragma in each of them. The recommended way to

handle this situation is to place the version pragma into a separate header file and include it

into the object model files. If your project already has a header file that defines the application

version, then it is natural to place this pragma there. For example:

199Revision 2.6, March 2025 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

// version.hxx
//
// Define the application version.
//

#define MYAPP_VERSION 0x020306 // 2.3.6

#ifdef ODB_COMPILER
#pragma db model version(1, 7)
#endif

Note that we can also use macros in the version pragma which allows us to specify all the

versions in a single place. For example:

#define MYAPP_VERSION 0x020306 // 2.3.6
#define MYAPP_BASE_VERSION 0x020000 // 2.0.0

#ifdef ODB_COMPILER
#pragma db model version(MYAPP_BASE_VERSION, MYAPP_VERSION)
#endif

It is also possible to have multiple object models within the same application that have different

versions. Such models must be independent, that is, no headers from one model shall include a

header from another. You will also need to assign different schema names to each model with the

--schema-name ODB compiler option.

Once we specify the object model version, the ODB compiler starts tracking database schema

changes in a changelog file. Changelog has an XML-based, line-oriented format. It uses XML in

order to provide human readability while also facilitating, if desired, processing and analysis with

custom tools. The line orientation makes it easy to review with tools like diff.

The changelog is maintained by the ODB compiler. Specifically, you do not need to make any

manual changes to this file. You will, however, need to keep it around from one invocation of the

ODB compiler to the next. In other words, the changelog file is both the input and the output of

the ODB compiler. This, for example, means that if your project’s source code is stored in a

version control repository, then you will most likely want to store the changelog there as well. If

you delete the changelog, then any ability to do schema migration will be lost.

The only operation that you may want to perform with the changelog is to review the database

schema changes that resulted from the C++ object model changes. For this you can use a tool like

diff or, better yet, the change review facilities offered by your revision control system. For this

purpose the contents of a changelog will be self-explanatory.

As an example, consider the following initial object model:

Revision 2.6, March 2025200 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

// person.hxx
//

#include <string>

#pragma db model version(1, 1)

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long long id_;

 std::string first_;
 std::string last_;
};

We then compile this header file with the ODB compiler (using the PostgreSQL database as an

example):

odb --database pgsql --generate-schema person.hxx

If we now look at the list of generated files, then in addition to the now familiar

person-odb.?xx and person.sql, we will also see person.xml — the changelog file.

Just for illustration, below are the contents of this changelog.

<changelog database="pgsql">
 <model version="1">
 <table name="person" kind="object">
 <column name="id" type="BIGINT" null="false"/>
 <column name="first" type="TEXT" null="false"/>
 <column name="last" type="TEXT" null="false"/>
 <primary-key auto="true">
 <column name="id"/>
 </primary-key>
 </table>
 </model>
</changelog>

Let’s say we now would like to add another data member to the person class — the middle

name. We increment the version and make the change:

#pragma db model version(1, 2)

#pragma db object
class person
{
 ...

201Revision 2.6, March 2025 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

 #pragma db id auto
 unsigned long long id_;

 std::string first_;
 std::string middle_;
 std::string last_;
};

We use exactly the same command line to re-compile our file:

odb --database pgsql --generate-schema person.hxx

This time the ODB compiler will read the old changelog, update it, and write out the new version.

Again, for illustration only, below are the updated changelog contents:

<changelog database="pgsql">
 <changeset version="2">
 <alter-table name="person">
 <add-column name="middle" type="TEXT" null="false"/>
 </alter-table>
 </changeset>

 <model version="1">
 <table name="person" kind="object">
 <column name="id" type="BIGINT" null="false"/>
 <column name="first" type="TEXT" null="false"/>
 <column name="last" type="TEXT" null="false"/>
 <primary-key auto="true">
 <column name="id"/>
 </primary-key>
 </table>
 </model>
</changelog>

Just to reiterate, while the changelog may look like it could be written by hand, it is maintained

completely automatically by the ODB compiler and the only reason you may want to look at its

contents is to review the database schema changes. For example, if we compare the above two

changelogs with diff, we will get the following summary of the database schema changes:

--- person.xml.orig
+++ person.xml
@@ -1,4 +1,10 @@
<changelog database="pgsql">
+ <changeset version="2">
+ <alter-table name="person">
+ <add-column name="middle" type="TEXT" null="false"/>
+ </alter-table>
+ </changeset>

Revision 2.6, March 2025202 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

+
 <model version="1">
 <table name="person" kind="object">
 <column name="id" type="BIGINT" null="false"/>

The changelog is only written when we generate the database schema, that is, the --gener­
ate-schema option is specified. Invocations of the ODB compiler that only produce the

database support code (C++) do not read or update the changelog. To put it another way, the

changelog tracks changes in the resulting database schema, not the C++ object model.

ODB ignores column order when comparing database schemas. This means that we can re-order

data members in a class without causing any schema changes. Member renames, however, will

result in schema changes since the column name changes as well (unless we specified the column

name explicitly). From ODB’s perspective such a rename looks like the deletion of one data

member and the addition of another. If we don’t want this to be treated as a schema change, then

we will need to keep the old column name by explicitly specifying it with the db column
pragma. For example, here is how we can rename middle_ to middle_name_ without

causing any schema changes:

#pragma db model version(1, 2)

#pragma db object
class person
{
 ...

 #pragma db column("middle") // Keep the original column name.
 std::string middle_name_;

 ...
};

If your object model consists of a large number of header files and you generate the database

schema for each of them individually, then a changelog will be created for each of your header

files. This may be what you want, however, the large number of changelogs can quickly become

unwieldy. In fact, if you are generating the database schema as standalone SQL files, then you

may have already experienced a similar problem caused by a large number of .sql files, one for

each header.

The solution to both of these problems is to generate a combined database schema file and a

single changelog. For example, assume we have three header files in our object model:

person.hxx, employee.hxx, and employer.hxx. To generate the database support code

we compile them as usual but without specifying the --generate-schema option. In this

case no changelog is created or updated:

203Revision 2.6, March 2025 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

odb --database pgsql person.hxx
odb --database pgsql employee.hxx
odb --database pgsql employer.hxx

To generate the database schema, we perform a separate invocation of the ODB compiler. This

time, however, we instruct it to only generate the schema (--generate-schema-only) and

produce it combined (--at-once) for all the files in our object model:

odb --database pgsql --generate-schema-only --at-once \
--input-name company person.hxx employee.hxx employer.hxx

The result of the above command is a single company.sql file (the name is derived from the

--input-name value) that contains the database schema for our entire object model. There is

also a single corresponding changelog file — company.xml.

The same can be achieved for the embedded schema by instructing the ODB compiler to generate

the database creation code into a separate C++ file (--schema-format separate):

odb --database pgsql --generate-schema-only --schema-format separate \
--at-once --input-name company person.hxx employee.hxx employer.hxx

The result of this command is a single company-schema.cxx file and, again,

company.xml.

Note also that by default the changelog file is not placed into the directory specified with the

--output-dir option. This is due to the changelog being both an input and an output file at

the same time. As a result, by default, the ODB compiler will place it in the directory of the input

header file.

There is, however, a number of command line options (including --changelog-dir) that

allow us to fine-tune the name and location of the changelog file. For example, you can instruct

the ODB compiler to read the changelog from one file while writing it to another. This, for

example, can be useful if you want to review the changes before discarding the old file. For more

information on these options, refer to the ODB Compiler Command Line Manual and search for

"changelog".

When we were discussing version increments above, we used the terms development and release.

Specifically, we talked about keeping the same object model versions during development

periods and incrementing them after releases. What is a development period and a release in this

context? These definitions can vary from project to project. Generally, during a development

period we work on one or more changes to the object model that result in the changes to the

database schema. A release is a point where we make our changes available to someone else who

may have an older database to migrate from. In the traditional sense, a release is a point where

you make a new version of your application available to its users. However, for schema evolution

purposes, a release could also mean simply making your schema-altering changes available to

Revision 2.6, March 2025204 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

http://www.codesynthesis.com/products/odb/doc/odb.xhtml

other developers on your team. Let us consider two common scenarios to illustrate how all this

fits together.

One way to setup a project would be to re-use the application development period and application

release for schema evolution. That is, during a new application version development we keep a

single object model version and when we release the application, we increment the model

version. In this case it makes sense to also reuse the application version as a model version for

consistency. Here is a step-by-step guide for this setup:

1. During development, keep the current object model version open.

2. Before the release (for example, when entering a "feature freeze") close the version.

3. After the release, update the version and open it.

4. For each new feature, review the changeset at the top of the changelog, for example, with

diff or your version control facilities. If you are using a version control, then this is best

done just before committing your changes to the repository.

An alternative way to setup schema versioning in a project would be to define the development

period as working on a single feature and the release as making this feature available to other

people (developers, testers, etc.) on your team, for example, by committing the changes to a

public version control repository. In this case, the object model version will be independent of the

application version and can simply be a sequence that starts with 1 and is incremented by 1. Here

is a step-by-step guide for this setup:

1. Keep the current model version closed. Once a change is made that affects the database

schema, the ODB compiler will refuse to update the changelog.

2. If the change is legitimate, open a new version, that is, increment the current version and

make it open.

3. Once the feature is implemented and tested, review the final set of database changes (with

diff or your version control facilities), close the version, and commit the changes to the

version control repository (if using).

If you are using a version control repository that supports pre-commit checks, then you may want

to consider adding such a check to make sure the committed version is always closed.

If we are just starting schema evolution in our project, which approach should we choose? The

two approaches will work better in different situations since they have a different set of advan­

tages and disadvantages. The first approach, which we can call version per application release, is

best suited for simpler projects with smaller releases since otherwise a single migration will

bundle a large number of unrelated actions corresponding to different features. This can become

difficult to review and, if things go wrong, debug.

205Revision 2.6, March 2025 C++ Object Persistence with ODB

13.1 Object Model Version and Changelog

The second approach, which we can call version per feature, is much more modular and provides

a number of additional benefits. We can perform migrations for each feature as a discreet step

which makes it easier to debug. We can also place each such migration step into a separate trans­

action further improving reliability. It also scales much better in larger teams where multiple

developers can work concurrently on features that affect the database schema. For example, if

you find yourself in a situation where another developer on your team used the same version as

you and managed to commit his changes before you (that is, you have a merge conflict), then you

can simply change the version to the next available one, regenerate the changelog, and continue

with your commit.

Overall, unless you have strong reasons to prefer the version per application release approach,

rather choose version per feature even though it may seem more complex at the beginning. Also,

if you do select the first approach, consider provisioning for switching to the second method by

reserving a sub-version number. For example, for an application version in the form 2.3.4 you

can make the object model version to be in the form 0x0203040000, reserving the last two

bytes for a sub-version. Later on you can use it to switch to the version per feature approach.

13.2 Schema Migration

Once we enable schema evolution by specifying the object model version, in addition to the

schema creation statements, the ODB compiler starts generating schema migration statements for

each version all the way from the base to the current. As with schema creation, schema migration

can be generated either as a set of SQL files or embedded into the generated C++ code

(--schema-format option).

For each migration step, that is from one version to the next, ODB generates two sets of state­

ments: pre-migration and post-migration. The pre-migration statements "relax" the database

schema so that both old and new data can co-exist. At this stage new columns and tables are

added while old constraints are dropped. The post-migration statements "tighten" the database

schema back so that only data conforming to the new format can remain. At this stage old

columns and tables are dropped and new constraints are added. Now you can probably guess

where the data migration fits into this — between the pre and post schema migrations where we

can both access the old data and create the new one.

If the schema is being generated as standalone SQL files, then we end up with a pair of files for

each step: the pre-migration file and the post-migration file. For the person example we started

in the previous section we will have the person-002-pre.sql and

person-002-post.sql files. Here 002 is the version to which we are migrating while the

pre and post suffixes specify the migration stage. So if we wanted to migrate a person
database from version 1 to 2, then we would first execute person-002-pre.sql, then

migrate the data, if any (discussed in more detail in the next section), and finally execute

person-002-post.sql. If our database is several versions behind, for example the database

has version 1 while the current version is 5, then we simply perform this set of steps for each

Revision 2.6, March 2025206 C++ Object Persistence with ODB

13.2 Schema Migration

version until we reach the current version.

If we look at the contents of the person-002-pre.sql file, we will see the following (or

equivalent, depending on the database used) statement:

ALTER TABLE "person"
 ADD COLUMN "middle" TEXT NULL;

As we would expect, this statement adds a new column corresponding to the new data member.

An observant reader would notice, however, that the column is added as NULL even though we

never requested this semantics in our object model. Why is the column added as NULL? If during

migration the person table already contains rows (that is, existing objects), then an attempt to

add a non-NULL column that doesn’t have a default value will fail. As a result, ODB will initially

add a new column that doesn’t have a default value as NULL but then clean this up at the

post-migration stage. This way your data migration code is given a chance to assign some mean­

ingful values for the new data member for all the existing objects. Here are the contents of the

person-002-post.sql file:

ALTER TABLE "person"
 ALTER COLUMN "middle" SET NOT NULL;

Currently ODB directly supports the following elementary database schema changes:

add table

drop table

add column

drop column

alter column, set NULL/NOT NULL

add foreign key

drop foreign key

add index

drop index

More complex changes can normally be implemented in terms of these building blocks. For

example, to change a type of a data member (which leads to a change of a column type), we can

add a new data member with the desired type (add column), migrate the data, and then delete the

old data member (drop column). ODB will issue diagnostics for cases that are currently not

supported directly. Note also that some database systems (notably SQLite) have a number of limi­

tations in their support for schema changes. For more information on these database-specific limi­

tations, refer to the "Limitations" sections in Part II, "Database Systems".

How do we know what the current database version is? That is, the version from which we need

to migrate? We need to know this, for example, in order to determine the set of migrations we

have to perform. By default, when schema evolution is enabled, ODB maintains this information

207Revision 2.6, March 2025 C++ Object Persistence with ODB

13.2 Schema Migration

in a special table called schema_version that has the following (or equivalent, depending on

the database used) definition:

CREATE TABLE "schema_version" (
 "name" TEXT NOT NULL PRIMARY KEY,
 "version" BIGINT NOT NULL,
 "migration" BOOLEAN NOT NULL);

The name column is the schema name as specified with the --schema-name option. It is

empty for the default schema. The version column contains the current database version. And,

finally, the migration flag indicates whether we are in the process of migrating the database,

that is, between the pre and post-migration stages.

The schema creation statements (person.sql in our case) create this table and populate it with

the initial model version. For example, if we executed person.sql corresponding to version 1
of our object model, then name would have been empty (which signifies the default schema since

we didn’t specify --schema-name), version will be 1 and migration will be FALSE.

The pre-migration statements update the version and set the migration flag to TRUE. Continuing

with our example, after executing person-002-pre.sql, version will become 2 and

migration will be set to TRUE. The post-migration statements simply clear the migration flag.

In our case, after running person-002-post.sql, version will remain 2 while migra­
tion will be reset to FALSE.

Note also that above we mentioned that the schema creation statements (person.sql) create

the schema_version table. This means that if we enable schema evolution support in the

middle of a project, then we could already have existing databases that don’t include this table.

As a result, ODB will not be able to handle migrations for such databases unless we manually add

the schema_version table and populate it with the correct version information. For this

reason, it is highly recommended that you consider whether to use schema evolution and, if so,

enable it from the beginning of your project.

The odb::database class provides an API for accessing and modifying the current database

version:

namespace odb
{
 using schema_version = unsigned long long;

 struct LIBODB_EXPORT schema_version_migration
 {
 schema_version_migration (schema_version = 0,
 bool migration = false);

 schema_version version;
 bool migration;

Revision 2.6, March 2025208 C++ Object Persistence with ODB

13.2 Schema Migration

 // This class also provides the ==, !=, <, >, <=, and >= operators.
 // Version ordering is as follows: {1,f} < {2,t} < {2,f} < {3,t}.
 };

 class database
 {
 public:
 ...

 schema_version
 schema_version (const std::string& name = "") const;

 bool
 schema_migration (const std::string& name = "") const;

 const schema_version_migration&
 schema_version_migration (const std::string& name = "") const;

 // Set schema version and migration state manually.
 //
 void
 schema_version_migration (schema_version,
 bool migration,
 const std::string& name = "");

 void
 schema_version_migration (const schema_version_migration&,
 const std::string& name = "");

 // Set default schema version table for all schemas.
 //
 void
 schema_version_table (const std::string& table_name);

 // Set schema version table for a specific schema.
 //
 void
 schema_version_table (const std::string& table_name,
 const std::string& name);
 };
}

The schema_version() and schema_migration() accessors return the current database

version and migration flag, respectively. The optional name argument is the schema name. If the

database schema hasn’t been created (that is, there is no corresponding entry in the

schema_version table or this table does not exist), then schema_version() returns 0.

The schema_version_migration() accessor returns both version and migration flag

together in the schema_version_migration struct.

209Revision 2.6, March 2025 C++ Object Persistence with ODB

13.2 Schema Migration

You may already have a version table in your database or you (or your database administrator)

may prefer to keep track of versions your own way. You can instruct ODB not to create the

schema_version table with the --suppress-schema-version option. However, ODB

still needs to know the current database version in order for certain schema evolution mechanisms

to function properly. As a result, in this case, you will need to set the schema version on the

database instance manually using the schema_version_migration() modifier. Note that the modi­

fier API is not thread-safe. That is, you should not modify the schema version while other threads

may be accessing or modifying the same information.

Note also that the accessors we discussed above will only query the schema_version table

once and, if the version could be determined, cache the result. If, however, the version could not

be determined (that is, schema_version() returned 0), then a subsequent call will re-query

the table. While it is probably a bad idea to modify the database schema while the application is

running (other than via the schema_catalog API, as discussed below), if for some reason you

need ODB to re-query the version, then you can manually set it to 0 using the

schema_version_migration() modifier.

It is also possible to change the name of the table that stores the schema version using the

--schema-version-table option. You will also need to specify this alternative name on

the database instance using the schema_version_table() modifier. The first version

specifies the default table that is used for all the schema names. The second version specifies the

table for a specific schema. The table name should be database-quoted, if necessary.

If we are generating our schema migrations as standalone SQL files, then the migration workflow

could look like this:

1. The database administrator determines the current database version. If migration is required,

then for each migration step (that is, from one version to the next), they perform the follow­

ing:

2. Execute the pre-migration file.

3. Execute our application (or a separate migration program) to perform data migration

(discussed later). Our application can determine that is is being executed in the "migration

mode" by calling schema_migration() and then which migration code to run by

calling schema_version().

4. Execute the post-migration file.

These steps become more integrated and automatic if we embed the schema creation and migra­

tion code into the generated C++ code. Now we can perform schema creation, schema migration,

and data migration as well as determine when each step is necessary programmatically from

within the application.

Revision 2.6, March 2025210 C++ Object Persistence with ODB

13.2 Schema Migration

Schema evolution support adds the following extra functions to the odb::schema_catalog
class, which we first discussed in Section 3.4, "Database".

namespace odb
{
 class schema_catalog
 {
 public:
 ...

 // Schema migration.
 //
 static void
 migrate_schema_pre (database&,
 schema_version,
 const std::string& name = "");

 static void
 migrate_schema_post (database&,
 schema_version,
 const std::string& name = "");

 static void
 migrate_schema (database&,
 schema_version,
 const std::string& name = "");

 // Data migration.
 //
 // Discussed in the next section.

 // Combined schema and data migration.
 //
 static void
 migrate (database&,
 schema_version = 0,
 const std::string& name = "");

 // Schema version information.
 //
 static schema_version
 base_version (const database&,
 const std::string& name = "");

 static schema_version
 base_version (database_id,
 const std::string& name = "");

 static schema_version

211Revision 2.6, March 2025 C++ Object Persistence with ODB

13.2 Schema Migration

 current_version (const database&,
 const std::string& name = "");

 static schema_version
 current_version (database_id,
 const std::string& name = "");

 static schema_version
 next_version (const database&,
 schema_version = 0,
 const std::string& name = "");

 static schema_version
 next_version (database_id,
 schema_version,
 const std::string& name = "");
 };
}

The migrate_schema_pre() and migrate_schema_post() static functions perform a

single stage (that is, pre or post) of a single migration step (that is, from one version to the next).

The version argument specifies the version we are migrating to. For instance, in our person
example, if we know that the database version is 1 and the next version is 2, then we can execute

code like this:

transaction t (db.begin ());

schema_catalog::migrate_schema_pre (db, 2);

// Data migration goes here.

schema_catalog::migrate_schema_post (db, 2);

t.commit ();

If you don’t have any data migration code to run, then you can perform both stages with a single

call using the migrate_schema() static function.

The migrate() static function perform both schema and data migration (we discuss data

migration in the next section). It can also perform several migration steps at once. If we don’t

specify its target version, then it will migrate (if necessary) all the way to the current model

version. As an extra convenience, migrate() will also create the database schema if none

exists. As a result, if we don’t have any data migration code or we have registered it with

schema_catalog (as discussed later), then the database schema creation and migration,

whichever is necessary, if at all, can be performed with a single function call:

Revision 2.6, March 2025212 C++ Object Persistence with ODB

13.2 Schema Migration

transaction t (db.begin ());
schema_catalog::migrate (db);
t.commit ();

Note also that schema_catalog is integrated with the odb::database schema version

API. In particular, schema_catalog functions will query and synchronize the schema version

on the database instance if and when required.

The schema_catalog class also allows you to iterate over known versions (remember, there

could be "gaps" in version numbers) with the base_version(), current_version() and

next_version() static functions. The base_version() and current_version()

functions return the base and current object model versions, respectively. That is, the lowest

version from which we can migrate and the version that we ultimately want to migrate to. The

next_version() function returns the next known version. If the passed version is greater or

equal to the current version, then this function will return the current version plus one (that is, one

past current). If we don’t specify the version, then next_version() will use the current

database version as the starting point. Note also that the schema version information provided by

these functions is only available if we embed the schema migration code into the generated C++

code. For standalone SQL file migrations this information is normally not needed since the

migration process is directed by an external entity, such as a database administrator or a script.

Most schema_catalog functions presented above also accept the optional schema name argu­

ment. If the passed schema name is not found, then the odb::unknown_schema exception is

thrown. Similarly, functions that accept the schema version argument will throw the

odb::unknown_schema_version exception if the passed or current version is invalid.

Refer to Section 3.14, "ODB Exceptions" for more information on these exceptions.

To illustrate how all these parts fit together, consider the following more realistic database

schema management example. Here we want to handle the schema creation in a special way and

perform each migration step in its own transaction.

schema_version v (db.schema_version ());
schema_version bv (schema_catalog::base_version (db));
schema_version cv (schema_catalog::current_version (db));

if (v == 0)
{
 // No schema in the database. Create the schema and
 // initialize the database.
 //
 transaction t (db.begin ());
 schema_catalog::create_schema (db);

 // Populate the database with initial data, if any.

 t.commit ();
}

213Revision 2.6, March 2025 C++ Object Persistence with ODB

13.2 Schema Migration

else if (v < cv)
{
 // Old schema (and data) in the database, migrate them.
 //

 if (v < bv)
 {
 // Error: migration from this version is no longer supported.
 }

 for (v = schema_catalog::next_version (db, v);
 v <= cv;
 v = schema_catalog::next_version (db, v))
 {
 transaction t (db.begin ());
 schema_catalog::migrate_schema_pre (db, v);

 // Data migration goes here.

 schema_catalog::migrate_schema_post (db, v);
 t.commit ();
 }
}
else if (v > cv)
{
 // Error: old application trying to access new database.
}

13.3 Data Migration

In quite a few cases specifying the default value for new data members will be all that’s required

to handle the existing objects. For example, the natural default value for the new middle name

that we have added is an empty string. And we can handle this case with the db default
pragma and without any extra C++ code:

#pragma db model version(1, 2)

#pragma db object
class person
{
 ...

 #pragma db default("")
 std::string middle_;
};

Revision 2.6, March 2025214 C++ Object Persistence with ODB

13.3 Data Migration

However, there will be situations where we would need to perform more elaborate data migra­

tions, that is, convert old data to the new format. As an example, suppose we want to add gender

to our person class. And, instead of leaving it unassigned for all the existing objects, we will try

to guess it from the first name. This is not particularly accurate but it could be sufficient for our

hypothetical application:

#pragma db model version(1, 3)

enum gender {male, female};

#pragma db object
class person
{
 ...

 gender gender_;
};

As we have discussed earlier, there are two ways to perform data migration: immediate and

gradual. To recap, with immediate migration we migrate all the existing objects at once, normally

after the schema pre-migration statements but before the post-migration statements. With gradual

migration, we make sure the new object model can accommodate both old and new data and

gradually migrate existing objects as the application runs and the opportunities to do so arise, for

example, an object is updated.

There is also another option for data migration that is not discussed further in this section. Instead

of using our C++ object model we could execute ad-hoc SQL statements that perform the neces­

sary conversions and migrations directly on the database server. While in certain cases this can be

a better option from the performance point of view, this approach is often limited in terms of the

migration logic that we can handle.

13.3.1 Immediate Data Migration

Let’s first see how we can implement an immediate migration for the new gender_ data

member we have added above. If we are using standalone SQL files for migration, then we could

add code along these lines somewhere early in main(), before the main application logic:

int
main ()
{
 ...

 odb::database& db = ...

 // Migrate data if necessary.
 //
 if (db.schema_migration ())

215Revision 2.6, March 2025 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

 {
 switch (db.schema_version ())
 {
 case 3:
 {
 // Assign gender to all the existing objects.
 //
 transaction t (db.begin ());

 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }

 t.commit ();
 break;
 }
 }
 }

 ...
}

If you have a large number of objects to migrate, it may also be a good idea, from the perfor­

mance point of view, to break one big transaction that we now have into multiple smaller transac­

tions (Section 3.5, "Transactions"). For example:

case 3:
 {
 transaction t (db.begin ());

 size_t n (0);
 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);

 // Commit the current transaction and start a new one after
 // every 100 updates.
 //
 if (n++ % 100 == 0)
 {
 t.commit ();
 t.reset (db.begin ());
 }
 }

 t.commit ();
 break;
 }

Revision 2.6, March 2025216 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

While it looks straightforward enough, as we add more migration snippets, this approach can

quickly become unmaintainable. Instead of having all the migrations in a single function and

determining when to run each piece ourselves, we can package each migration into a separate

function, register it with the schema_catalog class, and let ODB figure out when to run

which migration functions. To support this functionality, schema_catalog provides the

following data migration API:

namespace odb
{
 class schema_catalog
 {
 public:
 ...

 // Data migration.
 //
 static std::size_t
 migrate_data (database&,
 schema_version = 0,
 const std::string& name = "");

 using data_migration_function_type = void (database&);

 // Common (for all the databases) data migration, C++98/03 version:
 //
 template <schema_version v, schema_version base>
 static void
 data_migration_function (data_migration_function_type*,
 const std::string& name = "");

 // Common (for all the databases) data migration, C++11 version:
 //
 template <schema_version v, schema_version base>
 static void
 data_migration_function (std::function<data_migration_function_type>,
 const std::string& name = "");

 // Database-specific data migration, C++98/03 version:
 //
 template <schema_version v, schema_version base>
 static void
 data_migration_function (database&,
 data_migration_function_type*,
 const std::string& name = "");

 template <schema_version v, schema_version base>
 static void
 data_migration_function (database_id,
 data_migration_function_type*,
 const std::string& name = "");

217Revision 2.6, March 2025 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

 // Database-specific data migration, C++11 version:
 //
 template <schema_version v, schema_version base>
 static void
 data_migration_function (database&,
 std::function<data_migration_function_type>,
 const std::string& name = "");

 template <schema_version v, schema_version base>
 static void
 data_migration_function (database_id,
 std::function<data_migration_function_type>,
 const std::string& name = "");
 };

 // Static data migration function registration, C++98/03 version:
 //
 template <schema_version v, schema_version base>
 struct data_migration_entry
 {
 data_migration_entry (data_migration_function_type*,
 const std::string& name = "");

 data_migration_entry (database_id,
 data_migration_function_type*,
 const std::string& name = "");
 };

 // Static data migration function registration, C++11 version:
 //
 template <schema_version v, schema_version base>
 struct data_migration_entry
 {
 data_migration_entry (std::function<data_migration_function_type>,
 const std::string& name = "");

 data_migration_entry (database_id,
 std::function<data_migration_function_type>,
 const std::string& name = "");
 };
}

The migrate_data() static function performs data migration for the specified version. If no

version is specified, then it will use the current database version and also check whether the

database is in migration, that is, database::schema_migration() returns true. As a

result, all we need to do in our main() is call this function. It will check if migration is required

and if so, call all the migration functions registered for this version. For example:

Revision 2.6, March 2025218 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

int
main ()
{
 ...

 database& db = ...

 // Check if we need to migrate any data and do so
 // if that’s the case.
 //
 schema_catalog::migrate_data (db);

 ...
}

The migrate_data() function returns the number of migration functions called. You can use

this value for debugging or logging.

The only other step that we need to perform is register our data migration functions with

schema_catalog. At the lower level we can call the data_migration_function()
static function for every migration function we have, for example, at the beginning of main().

For each version, data migration functions are called in the order of registration.

A more convenient approach, however, is to use the data_migration_entry helper class

template to register the migration functions during static initialization. This way we can keep the

migration function and its registration code next to each other. Here is how we can reimplement

our gender migration code to use this mechanism:

static void
migrate_gender (odb::database& db)
{
 transaction t (db.begin ());

 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }

 t.commit ();
}

static const odb::data_migration_entry<3, MYAPP_BASE_VERSION>
migrate_gender_entry (&migrate_gender);

The first template argument to the data_migration_entry class template is the version we

want this data migration function to be called for. The second template argument is the base

model version. This second argument is necessary to detect the situation where we no longer need

219Revision 2.6, March 2025 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

this data migration function. Remember that when we move the base model version forward,

migrations from any version below the new base are no longer possible. We, however, may still

have migration functions registered for those lower versions. Since these functions will never be

called, they are effectively dead code and it would be useful to identify and remove them. To

assist with this, data_migration_entry (and lower lever data_migration_func­
tion()) will check at compile time (that is, static_assert) that the registration version is

greater than the base model version.

In the above example we use the MYAPP_BASE_VERSION macro that is presumably defined in

a central place, for example, version.hxx. This is the recommended approach since we can

update the base version in a single place and have the C++ compiler automatically identify all the

data migration functions that can be removed.

In C++11 we can also create a template alias so that we don’t have to repeat the base model

macro in every registration, for example:

template <schema_version v>
using migration_entry = odb::data_migration_entry<v, MYAPP_BASE_VERSION>;

static const migration_entry<3>
migrate_gender_entry (&migrate_gender);

For cases where you need to by-pass the base version check, for example, to implement your own

registration helper, ODB also provides "unsafe" versions of the data_migration_func­
tion() functions that take the version as a function argument rather than as a template parame­

ter.

In C++11 we can also use lambdas as migration functions, which makes the migration code more

concise:

static const migration_entry<3>
migrate_gender_entry (
 [] (odb::database& db)
 {
 transaction t (db.begin ());

 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }

 t.commit ();
 });

Revision 2.6, March 2025220 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

If we are using embedded schema migrations, then both schema and data migration is integrated

and can be performed with a single call to the schema_catalog::migrate() function that

we discussed earlier. For example:

int
main ()
{
 ...

 database& db = ...

 // Check if we need to migrate the database and do so
 // if that’s the case.
 //
 {
 transaction t (db.begin ());
 schema_catalog::migrate (db);
 t.commit ();
 }

 ...
}

Note, however, that in this case we call migrate() within a transaction (for the schema migra­

tion part) which means that our migration functions will also be called within this transaction. As

a result, we will need to adjust our migration functions not to start their own transaction:

static void
migrate_gender (odb::database& db)
{
 // Assume we are already in a transaction.
 //
 for (person& p: db.query<person> ())
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }
}

If, however, we want more granular transactions, then we can use the lower-level

schema_catalog functions to gain more control, as we have seen at the end of the previous

section. Here is the relevant part of that example with an added data migration call:

 // Old schema (and data) in the database, migrate them.
 //
 for (v = schema_catalog::next_version (db, v);
 v <= cv;
 v = schema_catalog::next_version (db, v))
 {

221Revision 2.6, March 2025 C++ Object Persistence with ODB

13.3.1 Immediate Data Migration

 transaction t (db.begin ());
 schema_catalog::migrate_schema_pre (db, v);
 schema_catalog::migrate_data (db, v);
 schema_catalog::migrate_schema_post (db, v);
 t.commit ();
 }

13.3.2 Gradual Data Migration

If the number of existing objects that require migration is large, then an all-at-once, immediate

migration, while simple, may not be practical from a performance point of view. In this case, we

can perform a gradual migration as the application does its normal functions.

With gradual migrations, the object model must be capable of representing data that conforms to

both old and new formats at the same time since, in general, the database will contain a mixture

of old and new objects. For example, in case of our gender data member, we need a special

value that represents the "no gender assigned yet" case (an old object). We also need to assign

this special value to all the existing objects during the schema pre-migration stage. One way to do

this would be add a special value to our gender enum and then make it the default value with

the db default pragma. A cleaner and easier approach, however, is to use NULL as a special

value. We can add support for the NULL value semantics to any existing type by wrapping it with

odb::nullable, boost::optional or similar (Section 7.3, "Pointers and NULL Value

Semantics"). We also don’t need to specify the default value explicitly since NULL is used auto­

matically. Here is how we can use this approach in our gender example:

#include <odb/nullable.hxx>

#pragma db object
class person
{
 ...

 odb::nullable<gender> gender_;
};

A variety of strategies can be employed to implement gradual migrations. For example, we can

migrate the data when the object is updated as part of the normal application logic. While there is

no migration cost associated with this approach (the object is updated anyway), depending on

how often objects are typically updated, this strategy can take a long time to complete. An alter­

native strategy would be to perform an update whenever an old object is loaded. Yet another

strategy is to have a separate thread that slowly migrates all the old objects as the application

runs.

Revision 2.6, March 2025222 C++ Object Persistence with ODB

13.3.2 Gradual Data Migration

As an example, let us implement the first approach for our gender migration. While we could

have added the necessary code throughout the application, from the maintenance point of view, it

is best to try and localize the gradual migration logic to the persistent classes that it affects. And

for this database operation callbacks (Section 14.1.7, "callback") are a very useful mecha­

nism. In our case, all we have to do is handle the post_load event where we guess the gender

if it is NULL:

#include <odb/core.hxx> // odb::database
#include <odb/callback.hxx> // odb::callback_event
#include <odb/nullable.hxx>

#pragma db object callback(migrate)
class person
{
 ...

 void
 migrate (odb::callback_event e, odb::database&)
 {
 if (e == odb::callback_event::post_load)
 {
 // Guess gender if not assigned.
 //
 if (gender_.null ())
 gender_ = guess_gender (first_);
 }
 }

 odb::nullable<gender> gender_;
};

In particular, we don’t have to touch any of the accessors or modifiers or the application logic —

all of them can assume that the value can never be NULL. And when the object is next updated,

the new gender value will be stored automatically.

All gradual migrations normally end up with a terminating immediate migration some number of

versions down the line, when the bulk of the objects has presumably been converted. This way

we don’t have to keep the gradual migration code around forever. Here is how we could imple­

ment a terminating migration for our example:

// person.hxx
//
#pragma db model version(1, 4)

#pragma db object
class person
{
 ...

223Revision 2.6, March 2025 C++ Object Persistence with ODB

13.3.2 Gradual Data Migration

 gender gender_;
};

// person.cxx
//
static void
migrate_gender (odb::database& db)
{
 using query = odb::query<person>;

 for (person& p: db.query<person> (query::gender.is_null ()))
 {
 p.gender (guess_gender (p.first ()));
 db.update (p);
 }
}

static const odb::data_migration_entry<4, MYAPP_BASE_VERSION>
migrate_gender_entry (&migrate_gender);

A couple of points to note about this code. Firstly, we removed all the gradual migration logic

(the callback) from the class and replaced it with the immediate migration function. We also

removed the odb::nullable wrapper (and therefore disallowed the NULL values) since after

this migration all the objects will have been converted. Finally, in the migration function, we only

query the database for objects that need migration, that is, have NULL gender.

13.4 Soft Object Model Changes

Let us consider another common kind of object model change: we delete an old member, add a

new one, and need to copy the data from the old to the new, perhaps applying some conversion.

For example, we may realize that in our application it is a better idea to store a person’s name as a

single string rather than split it into three fields. So what we would like to do is add a new data

member, let’s call it name_, convert all the existing split names, and then delete the first_,

middle_, and last_ data members.

While this sounds straightforward, there is a problem. If we delete (that is, physically remove

from the source code) the old data members, then we won’t be able to access the old data. The

data will still be available in the database between the schema pre and post-migrations, it is just

we will no longer be able to access it through our object model. And if we keep the old data

members around, then the old data will remain stored in the database even after the schema

post-migration.

There is also a more subtle problem that has to do with existing migrations for the previous

versions. Remember, in version 3 of our person example we added the gender_ data

member. We also have a data migration function which guesses the gender based on the first

name. Deleting the first_ data member from our class will obviously break this code. But even

Revision 2.6, March 2025224 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

adding the new name_ data member will cause problems because when we try to update the

object in order to store the new gender, ODB will try to update name_ as well. But there is no

corresponding column in the database yet. When we run this migration function, we are still

several versions away from the point where the name column will be added.

This is a very subtle but also very important implication to understand. Unlike the main applica­

tion logic, which only needs to deal with the current model version, data migration code works on

databases that can be multiple versions behind the current version.

How can we resolve this problem? It appears what we need is the ability to add or delete data

members starting from a specific version. In ODB this mechanism is called soft member addi­

tions and deletions. A soft-added member is only treated as persistent starting from the addition

version. A soft-deleted member is persistent until the deletion version (but including the migra­

tion stage). In its essence, soft model changes allow us to maintain multiple versions of our object

model all with a single set of persistent classes. Let us now see how this functionality can help

implement our changes:

#pragma db model version(1, 4)

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long long id_;

 #pragma db deleted(4)
 std::string first_;

 #pragma db deleted(4)
 std::string middle_;

 #pragma db deleted(4)
 std::string last_;

 #pragma db added(4)
 std::string name_;

 gender gender_;
};

The migration function for this change could then look like this:

static void
migrate_name (odb::database& db)
{
 for (person& p: db.query<person> ())

225Revision 2.6, March 2025 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

 {
 p.name (p.first () + " " +
 p.middle () + (p.middle ().empty () ? "" : " ") +
 p.last ());
 db.update (p);
 }
}

static const odb::data_migration_entry<4, MYAPP_BASE_VERSION>
migrate_name_entry (&migrate_name);

Note also that no changes are required to the gender migration function.

As you may have noticed, in the code above we assumed that the person class still provides

public accessors for the now deleted data members. This might not be ideal since now they

should not be used by the application logic. The only code that may still need to access them is

the migration functions. The recommended way to resolve this is to remove the accessors/modi­

fiers corresponding to the deleted data member, make migration functions static functions of the

class being migrated, and then access the deleted data members directly. For example:

#pragma db model version(1, 4)

#pragma db object
class person
{
 ...

private:
 friend class odb::access;

 #pragma db id auto
 unsigned long long id_;

 #pragma db deleted(4)
 std::string first_;

 #pragma db deleted(4)
 std::string middle_;

 #pragma db deleted(4)
 std::string last_;

 #pragma db added(4)
 std::string name_;

 gender gender_;

private:
 static void
 migrate_gender (odb::database&);

Revision 2.6, March 2025226 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

 static void
 migrate_name (odb::database&);
};

void person::
migrate_gender (odb::database& db)
{
 for (person& p: db.query<person> ())
 {
 p.gender_ = guess_gender (p.first_);
 db.update (p);
 }
}

static const odb::data_migration_entry<3, MYAPP_BASE_VERSION>
migrate_name_entry (&migrate_gender);

void person::
migrate_name (odb::database& db)
{
 for (person& p: db.query<person> ())
 {
 p.name_ = p.first_ + " " +
 p.middle_ + (p.middle_.empty () ? "" : " ") +
 p.last_;
 db.update (p);
 }
}

static const odb::data_migration_entry<4, MYAPP_BASE_VERSION>
migrate_name_entry (&migrate_name);

Another potential issue with the soft-deletion is the requirement to keep the delete data members

in the class. While they will not be initialized in the normal operation of the application (that is,

not a migration), this can still be a problem if we need to minimize the memory footprint of our

classes. For example, we may cache a large number of objects in memory and having three

std::string data members can be a significant overhead.

The recommended way to resolve this issue is to place all the deleted data members into a

dynamically allocated composite value type. For example:

#pragma db model version(1, 4)

#pragma db object
class person
{
 ...

 #pragma db id auto

227Revision 2.6, March 2025 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

 unsigned long long id_;

 #pragma db added(4)
 std::string name_;

 gender gender_;

 #pragma db value
 struct deleted_data
 {
 #pragma db deleted(4)
 std::string first_;

 #pragma db deleted(4)
 std::string middle_;

 #pragma db deleted(4)
 std::string last_;
 };

 #pragma db column("")
 std::unique_ptr<deleted_data> dd_;

 ...
};

ODB will then automatically allocate the deleted value type if any of the deleted data members

are being loaded. During the normal operation, however, the pointer will stay NULL and therefore

reduce the common case overhead to a single pointer per class. Note that we make the composite

value column prefix empty (the db column("") pragma) in order to keep the same column

names for the deleted data members.

Soft-added and deleted data members can be used in objects, composite values, views, and

container value types. We can also soft-add and delete data members of simple, composite,

pointer to object, and container types. Only special data members, such as the object id and the

optimistic concurrency version, cannot be soft-added or deleted.

It is also possible to soft-delete a persistent class. We can still work with the existing objects of

such a class, however, no table is created in new databases for soft-deleted classes. To put it

another way, a soft-delete class is like an abstract class (no table) but which can still be loaded,

updated, etc. Soft-added persistent classes do not make much sense and are therefore not

supported.

As an example of a soft-deleted class, suppose we want to replace our person class with the

new employee object and migrate the data. Here is how we could do this:

Revision 2.6, March 2025228 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

#pragma db model version(1, 5)

#pragma db object deleted(5)
class person
{
 ...
};

#pragma db object
class employee
{
 ...

 #pragma db id auto
 unsigned long long id_;

 std::string name_;
 gender gender_;

 static void
 migrate_person (odb::database&);
};

void employee::
migrate_person (odb::database& db)
{
 for (person& p: db.query<person> ())
 {
 employee e (p.name (), p.gender ());
 db.persist (e);
 }
}

static const odb::data_migration_entry<5, MYAPP_BASE_VERSION>
migrate_person_entry (&migrate_person);

As we have seen above, hard member additions and deletions can (and most likely will) break

existing data migration code. Why, then, not treat all the changes, or at least additions, as soft?

ODB requires you to explicitly request this semantics because support for soft-added and deleted

data members incurs runtime overhead. And there can be plenty of cases where there is no exist­

ing data migration and therefore hard additions and deletions are sufficient.

In some cases a hard addition or deletion will result in a compile-time error. For example, one of

the data migration functions may reference the data member we just deleted. In many cases,

however, such errors can only be detected at runtime, and, worse yet, only when the migration

function is executed. For example, we may hard-add a new data member that an existing migra­

tion function will try to indirectly store in the database as part of an object update. As a result, it

is highly recommended that you always test your application with the database that starts at the

base version so that every data migration function is called and therefore ensured to still work

229Revision 2.6, March 2025 C++ Object Persistence with ODB

13.4 Soft Object Model Changes

correctly.

To help with this problem you can also instruct ODB to warn you about any hard additions or

deletions with the --warn-hard-add, --warn-hard-delete, and --warn-hard
command line options. ODB will only warn you about hard changes in the current version and

only for as long as it is open, which makes this mechanism fairly usable.

You may also be wondering why we have to specify the addition and deletion versions explicitly.

It may seem like the ODB compiler should be able to figure this out automatically. While it is

theoretically possible, to achieve this, ODB would have to also maintain a separate changelog of

the C++ object model in addition to the database schema changelog it already maintains. While

being a lot more complex, such an additional changelog would also complicate the workflow

significantly. In this light, maintaining this change information as part of the original source files

appears to be a cleaner and simpler approach.

As we discussed before, when we move the base model version forward we essentially drop

support for migrations from versions before the new base. As a result, it is no longer necessary to

maintain the soft semantics of additions and deletions up to and including the new base version.

ODB will issue diagnostics for all such members and classes. For soft deletions we can simply

remove the data member or class entirely. For soft additions we only need to remove the

db added pragma.

13.4.1 Reuse Inheritance Changes

Besides adding and deleting data members, another way to alter the object’s table is using

reuse-style inheritance. If we add a new reuse base, then, from the database schema point of view,

this is equivalent to adding all its columns to the derived object’s table. Similarly, deleting reuse

inheritance results in all the base’s columns being deleted from the derived’s table.

In the future ODB may provide direct support for soft addition and deletion of inheritance.

Currently, however, this semantics can be emulated with soft-added and deleted data members.

The following table describes the most common scenarios depending on where columns are

added or deleted, that is, base table, derived table, or both.

Revision 2.6, March 2025230 C++ Object Persistence with ODB

13.4.1 Reuse Inheritance Changes

DELETE HARD SOFT

In both (delete

inheritance and

base)

Delete inheritance

and base. Move

object id to derived.

Soft-delete base. Mark all data members (except id) in

base as soft-deleted.

In base only

(delete base)

Option 1: mark base

as abstract.

Option 2: move all

the base member to

derived, delete base.

Soft-delete base.

In derived only

(delete inheri­

tance)

Delete inheritance,

add object id to

derived.

Option 1: copy base to a new soft-deleted base, inherit

from it instead. Mark all the data members (expect id)

in this new base as soft-deleted. Note: we add the new

base as soft-deleted to get notified when we can

remove it.

Option 2: Copy all the data members from base to

derived and mark them as soft-deleted in derived.

ADD HARD SOFT

In both (add

new base and

inheritance)

Add new base and inheri­

tance. Potentially move object

id member from derived to

base.

Add new base and mark all its data members

as soft-added. Add inheritance. Move object

id from derived to base.

In base only

(refactor exist­

ing data to new

base)

Add new base and move data

members from derived to

base. Note: in most cases the

new base will be made

abstract which make this

scenario non-schema chang­

ing.

The same as HARD.

In derived only

(add inheritance

to existing base)

Add inheritance, delete object

id in derived.

Copy existing base to a new abstract base and

inherit from it. Mark all the database

members in the new base as soft-added

(except object id). When notified by the ODB

compiler that the soft addition of the data

members is no longer necessary, delete the

copy and inherit from the original base.

231Revision 2.6, March 2025 C++ Object Persistence with ODB

13.4.1 Reuse Inheritance Changes

13.4.2 Polymorphism Inheritance Changes

Unlike reuse inheritance, adding or deleting a polymorphic base does not result in the base’s data

members being added or deleted from the derived object’s table because each class in a polymor­

phic hierarchy is stored in a separate table. There are, however, other complications due to the

presence of special columns (discriminator in the root table and object id links in derived tables)

which makes altering the hierarchy structure difficult to handle automatically. Adding or deleting

(including soft-deleting) of leaf classes (or leaf sub-hierarchies) in a polymorphic hierarchy is

fully supported. Any more complex changes, such as adding or deleting the root or an intermedi­

ate base or getting an existing class into or out of a polymorphic hierarchy can be handled by

creating a new leaf class (or leaf sub-hierarchy), soft-deleting the old class, and migrating the

data.

Revision 2.6, March 2025232 C++ Object Persistence with ODB

13.4.2 Polymorphism Inheritance Changes

14 ODB Pragma Language

As we have already seen in previous chapters, ODB uses a pragma-based language to capture

database-specific information about C++ types. This chapter describes the ODB pragma language

in more detail. It can be read together with other chapters in the manual to get a sense of what

kind of configurations and mapping fine-tuning are possible. You can also use this chapter as a

reference at a later stage.

An ODB pragma has the following syntax:

#pragma db qualifier [specifier specifier ...]

The qualifier tells the ODB compiler what kind of C++ construct this pragma describes. Valid

qualifiers are object, view, value, member, namespace, model, index, and map. A

pragma with the object qualifier describes a persistent object type. It tells the ODB compiler

that the C++ class it describes is a persistent class. Similarly, pragmas with the view qualifier

describe view types, the value qualifier describes value types and the member qualifier is used

to describe data members of persistent object, view, and value types. The namespace qualifier

is used to describe common properties of objects, views, and value types that belong to a C++

namespace while the model qualifier describes the whole C++ object model. The index quali­

fier defines a database index. And, finally, the map qualifier describes a mapping between addi­

tional database types and types for which ODB provides built-in support.

The specifier informs the ODB compiler about a particular database-related property of the C++

declaration. For example, the id member specifier tells the ODB compiler that this member

contains this object’s identifier. Below is the declaration of the person class that shows how we

can use ODB pragmas:

#pragma db object
class person
{
 ...
private:
 #pragma db member id
 unsigned long long id_;
 ...
};

In the above example we don’t explicitly specify which C++ class or data member the pragma

belongs to. Rather, the pragma applies to a C++ declaration that immediately follows the pragma.

Such pragmas are called positioned pragmas. In positioned pragmas that apply to data members,

the member qualifier can be omitted for brevity, for example:

233Revision 2.6, March 2025 C++ Object Persistence with ODB

14 ODB Pragma Language

 #pragma db id
 unsigned long long id_;

Note also that if the C++ declaration immediately following a position pragma is incompatible

with the pragma qualifier, an error will be issued. For example:

 #pragma db object // Error: expected class instead of data member.
 unsigned long long id_;

While keeping the C++ declarations and database declarations close together eases maintenance

and increases readability, we can also place them in different parts of the same header file or even

factor them to a separate file. To achieve this we use the so called named pragmas. Unlike posi­

tioned pragmas, named pragmas explicitly specify the C++ declaration to which they apply by

adding the declaration name after the pragma qualifier. For example:

class person
{
 ...
private:
 unsigned long long id_;
 ...
};

#pragma db object(person)
#pragma db member(person::id_) id

Note that in the named pragmas for data members the member qualifier is no longer optional.

The C++ declaration name in the named pragmas is resolved using the standard C++ name reso­

lution rules, for example:

namespace db
{
 class person
 {
 ...
 private:
 unsigned long long id_;
 ...
 };
}

namespace db
{
 #pragma db object(person) // Resolves db::person.
}

#pragma db member(db::person::id_) id

Revision 2.6, March 2025234 C++ Object Persistence with ODB

14 ODB Pragma Language

As another example, the following code fragment shows how to use the named value type pragma

to map a C++ type to a native database type:

#pragma db value(bool) type("INT")

#pragma db object
class person
{
 ...
private:
 bool married_; // Mapped to INT NOT NULL database type.
 ...
};

If we would like to factor the ODB pragmas into a separate file, we can include this file into the

original header file (the one that defines the persistent types) using the #include directive, for

example:

// person.hxx

class person
{
 ...
};

#ifdef ODB_COMPILER
include "person-pragmas.hxx"
#endif

Alternatively, instead of using the #include directive, we can use the --odb-epilogue
option to make the pragmas known to the ODB compiler when compiling the original header file,

for example:

--odb-epilogue ’#include "person-pragmas.hxx"’

The following sections cover the specifiers applicable to all the qualifiers mentioned above.

The C++ header file that defines our persistent classes and normally contains one or more ODB

pragmas is compiled by both the ODB compiler to generate the database support code and the

C++ compiler to build the application. Some C++ compilers issue warnings about pragmas that

they do not recognize. There are several ways to deal with this problem which are covered at the

end of this chapter in Section 14.9, "C++ Compiler Warnings".

235Revision 2.6, March 2025 C++ Object Persistence with ODB

14 ODB Pragma Language

14.1 Object Type Pragmas

A pragma with the object qualifier declares a C++ class as a persistent object type. The quali­

fier can be optionally followed, in any order, by one or more specifiers summarized in the table

below:

Specifier Summary Section

table table name for a persistent class 14.1.1

pointer pointer type for a persistent class 14.1.2

abstract persistent class is abstract 14.1.3

readonly persistent class is read-only 14.1.4

optimistic persistent class with the optimistic concurrency model 14.1.5

no_id persistent class has no object id 14.1.6

callback database operations callback 14.1.7

schema database schema for a persistent class 14.1.8

polymorphic persistent class is polymorphic 14.1.9

session enable/disable session support for a persistent class 14.1.10

definition definition location for a persistent class 14.1.11

transient all non-virtual data members in a persistent class are transient 14.1.12

sectionable support addition of new sections in derived classes 14.1.13

deleted persistent class is soft-deleted 14.1.14

bulk enable bulk operations for a persistent class 14.1.15

options database options for a persistent class 14.1.16

14.1.1 table

The table specifier specifies the table name that should be used to store objects of the persistent

class in a relational database. For example:

Revision 2.6, March 2025236 C++ Object Persistence with ODB

14.1 Object Type Pragmas

#pragma db object table("people")
class person
{
 ...
};

If the table name is not specified, the class name is used as the table name. The table name can be

qualified with a database schema, for example:

#pragma db object table("census.people")
class person
{
 ...
};

For more information on database schemas and the format of the qualified names, refer to Section

14.1.8, "schema".

14.1.2 pointer

The pointer specifier specifies the object pointer type for the persistent class. The object

pointer type is used to return, pass, and cache dynamically allocated instances of a persistent

class. For example:

#pragma db object pointer(std::shared_ptr<person>)
class person
{
 ...
};

There are several ways to specify an object pointer with the pointer specifier. We can use a

complete pointer type as shown in the example above. Alternatively, we can specify only the

template name of a smart pointer in which case the ODB compiler will automatically append the

class name as a template argument. The following example is therefore equivalent to the one

above:

#pragma db object pointer(std::shared_ptr)
class person
{
 ...
};

If you would like to use the raw pointer as an object pointer, you can use * as a shortcut:

237Revision 2.6, March 2025 C++ Object Persistence with ODB

14.1.2 pointer

#pragma db object pointer(*) // Same as pointer(person*)
class person
{
 ...
};

If a pointer type is not explicitly specified, the default pointer, specified at the namespace level

(Section 14.5.1, "pointer") or with the --default-pointer ODB compiler option, is

used. If neither of these two mechanisms is used to specify the pointer, then the raw pointer is

used by default.

For a more detailed discussion of object pointers, refer to Section 3.3, "Object and View Point­

ers".

14.1.3 abstract

The abstract specifier specifies that the persistent class is abstract. An instance of an abstract

class cannot be stored in the database and is normally used as a base for other persistent classes.

For example:

#pragma db object abstract
class person
{
 ...
};

#pragma db object
class employee: public person
{
 ...
};

#pragma db object
class contractor: public person
{
 ...
};

Persistent classes with pure virtual functions are automatically treated as abstract by the ODB

compiler. For a more detailed discussion of persistent class inheritance, refer to Chapter 8,

"Inheritance".

Revision 2.6, March 2025238 C++ Object Persistence with ODB

14.1.3 abstract

14.1.4 readonly

The readonly specifier specifies that the persistent class is read-only. The database state of

read-only objects cannot be updated. In particular, this means that you cannot call the

database::update() function (Section 3.10, "Updating Persistent Objects") for such

objects. For example:

#pragma db object readonly
class person
{
 ...
};

Read-only and read-write objects can derive from each other without any restrictions. When a

read-only object derives from a read-write object, the resulting whole object is read-only, includ­

ing the part corresponding to the read-write base. On the other hand, when a read-write object

derives from a read-only object, all the data members that correspond to the read-only base are

treated as read-only while the rest is treated as read-write.

Note that it is also possible to declare individual data members (Section 14.4.12, "readonly")

as well as composite value types (Section 14.3.6, "readonly") as read-only.

14.1.5 optimistic

The optimistic specifier specifies that the persistent class has the optimistic concurrency

model. A class with the optimistic concurrency model must also specify the data member that is

used to store the object version using the version pragma (Section 14.4.16, "version"). For

example:

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 unsigned long long version_;
};

If a base class has the optimistic concurrency model, then all its derived classes will automati­

cally have the optimistic concurrency model. The current implementation also requires that in any

given inheritance hierarchy the object id and the version data members reside in the same class.

For a more detailed discussion of optimistic concurrency, refer to Chapter 12, "Optimistic

Concurrency".

239Revision 2.6, March 2025 C++ Object Persistence with ODB

14.1.4 readonly

14.1.6 no_id

The no_id specifier specifies that the persistent class has no object id. For example:

#pragma db object no_id
class person
{
 ...
};

A persistent class without an object id has limited functionality. Such a class cannot be loaded

with the database::load() or database::find() functions (Section 3.9, "Loading

Persistent Objects"), updated with the database::update() function (Section 3.10, "Updat­

ing Persistent Objects"), or deleted with the database::erase() function (Section 3.11,

"Deleting Persistent Objects"). To load and delete objects without ids you can use the

database::query() (Chapter 4, "Querying the Database") and

database::erase_query() (Section 3.11, "Deleting Persistent Objects") functions,

respectively. There is no way to update such objects except by using native SQL statements

(Section 3.12, "Executing Native SQL Statements").

Furthermore, persistent classes without object ids cannot have container data members nor can

they be used in object relationships. Such objects are not entered into the session object cache

(Section 11.1, "Object Cache") either.

To declare a persistent class with an object id, use the data member id specifier (Section 14.4.1,

"id").

14.1.7 callback

The callback specifier specifies the persist class member function that should be called before

and after a database operation is performed on an object of this class. For example:

#include <odb/callback.hxx>

#pragma db object callback(init)
class person
{
 ...

 void
 init (odb::callback_event, odb::database&);
};

The callback function has the following signature and can be overloaded for constant objects:

Revision 2.6, March 2025240 C++ Object Persistence with ODB

14.1.6 no_id

void
name (odb::callback_event, odb::database&);

void
name (odb::callback_event, odb::database&) const;

The first argument to the callback function is the event that triggered this call. The odb::call­
back_event enum-like type is defined in the <odb/callback.hxx> header file and has the

following interface:

namespace odb
{
 struct callback_event
 {
 enum value
 {
 pre_persist,
 post_persist,
 pre_load,
 post_load,
 pre_update,
 post_update,
 pre_erase,
 post_erase
 };

 callback_event (value v);
 operator value () const;
 };
}

The second argument to the callback function is the database on which the operation is about to

be performed or has just been performed. A callback function can be inline or virtual.

The callback function for the *_persist, *_update, and *_erase events is always called

on the constant object reference while for the *_load events — always on the unrestricted refer­

ence.

If only the non-const version of the callback function is provided, then only the *_load
events will be delivered. If only the const version is provided, then all the events will be deliv­

ered to this function. Finally, if both versions are provided, then the *_load events will be

delivered to the non-const version while all others — to the const version. If you need to

modify the object in one of the "const" events, then you can safely cast away const-ness

using the const_cast operator if you know that none of the objects will be created const.

Alternatively, if you cannot make this assumption, then you can declare the data members you

wish to modify as mutable.

241Revision 2.6, March 2025 C++ Object Persistence with ODB

14.1.7 callback

A database operations callback can be used to implement object-specific pre and post initializa­

tions, registrations, and cleanups. As an example, the following code fragment outlines an imple­

mentation of a person class that maintains the transient age data member in addition to the

persistent date of birth. A callback is used to calculate the value of the former from the latter

every time a person object is loaded from the database.

#include <odb/core.hxx>
#include <odb/callback.hxx>

#pragma db object callback(init)
class person
{
 ...

private:
 friend class odb::access;

 date born_;

 #pragma db transient
 unsigned short age_;

 void
 init (odb::callback_event e, odb::database&)
 {
 switch (e)
 {
 case odb::callback_event::post_load:
 {
 // Calculate age from the date of birth.
 ...
 break;
 }
 default:
 break;
 }
 }
};

14.1.8 schema

The schema specifier specifies a database schema that should be used for the persistent class.

In relational databases the term schema can refer to two related but ultimately different concepts.

Normally it means a collection of tables, indexes, sequences, etc., that are created in the database

or the actual DDL statements that create these database objects. Some database implementations

support what would be more accurately called a database namespace but is also called a schema.

In this sense, a schema is a separate namespace in which tables, indexes, sequences, etc., can be

Revision 2.6, March 2025242 C++ Object Persistence with ODB

14.1.8 schema

created. For example, two tables that have the same name can coexist in the same database if they

belong to different schemas. In this section when we talk about a schema, we refer to the

database namespace meaning of this term.

When schemas are in use, a database object name is qualified with a schema. For example:

CREATE TABLE accounting.employee (...)

SELECT ... FROM accounting.employee WHERE ...

In the above example accounting is the schema and the employee table belongs to this

schema.

Not all database implementations support schemas. Some implementation that don’t support

schemas (for example, MySQL, SQLite) allow the use of the above syntax to specify the database

name. Yet others may support several levels of qualification. For example, Microsoft SQL Server

has three levels starting with the linked database server, followed by the database, and then

followed by the schema: server1.company1.accounting.employee. While the actual

meaning of the qualifier in a qualified name vary from one database implementation to another,

here we refer to all of them collectively as a schema.

In ODB, a schema for a table of a persistent class can be specified at the class level, C++ names­

pace level, or the file level. To assign a schema to a specific persistent class we can use the

schema specifier, for example:

#pragma db object schema("accounting")
class employee
{
 ...
};

If we are also assigning a table name, then we can use a shorter notation by specifying both the

schema and the table name in the table specifier:

#pragma db object table("accounting.employee")
class employee
{
 ...
};

If we want to assign a schema to all the persistent classes in a C++ namespace, then, instead of

specifying the schema for each class, we can specify it once at the C++ namespace level. For

example:

243Revision 2.6, March 2025 C++ Object Persistence with ODB

14.1.8 schema

#pragma db namespace schema("accounting")
namespace accounting
{
 #pragma db object
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

If we want to assign a schema to all the persistent classes in a file, then we can use the

--schema ODB compiler option. For example:

odb ... --schema accounting ...

An alternative to this approach with the same effect is to assign a schema to the global names­

pace:

#pragma db namespace() schema("accounting")

By default schema qualifications are accumulated starting from the persistent class, continuing

with the namespace hierarchy to which this class belongs, and finishing with the schema specified

with the --schema option. For example:

#pragma db namespace schema("audit_db")
namespace audit
{
 #pragma db namespace schema("accounting")
 namespace accounting
 {
 #pragma db object
 class employee
 {
 ...
 };
 }
}

If we compile the above code fragment with the --schema server1 option, then the

employee table will have the server1.audit_db.accounting.employee qualified

name.

Revision 2.6, March 2025244 C++ Object Persistence with ODB

14.1.8 schema

In some situations we may want to prevent such accumulation of the qualifications. To accom­

plish this we can use the so-called fully-qualified names, which have the empty leading name

component. This is analogous to the C++ fully-qualified names in the ::account­
ing::employee form. For example:

#pragma db namespace schema("accounting")
namespace accounting
{
 #pragma db object schema(".hr")
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

In the above code fragment, the employee table will have the hr.employee qualified name

while the employer — accounting.employer. Note also that the empty leading name

component is a special ODB syntax and is not propagated to the actual database names (using a

name like .hr.employee to refer to a table will most likely result in an error).

Auxiliary database objects for a persistent class, such as indexes, sequences, triggers, etc., are all

created in the same schema as the class table. By default, this is also true for the container tables.

However, if you need to store a container table in a different schema, then you can provide a

qualified name using the table specifier, for example:

#pragma db object table("accounting.employee")
class employee
{
 ...

 #pragma db object table("operations.projects")
 std::vector<std::string> projects_;
};

The standard syntax for qualified names used in the schema and table specifiers as well as the

view column specifier (Section 14.4.10, "column (view)") has the "name.name..." form

where, as discussed above, the leading name component can be empty to denote a fully qualified

name. This form, however, doesn’t work if one of the name components contains periods. To

support such cases the alternative form is available: "name"."name"... For example:

245Revision 2.6, March 2025 C++ Object Persistence with ODB

14.1.8 schema

#pragma db object table("accounting_1.2"."employee")
class employee
{
 ...
};

Finally, to specify an unqualified name that contains periods we can use the following special

syntax:

#pragma db object schema(."accounting_1.2") table("employee")
class employee
{
 ...
};

Table prefixes (Section 14.5.2, "table") can be used as an alternative to database schemas if the

target database system does not support schemas.

14.1.9 polymorphic

The polymorphic specifier specifies that the persistent class is polymorphic. For more infor­

mation on polymorphism support, refer to Chapter 8, "Inheritance".

14.1.10 session

The session specifier specifies whether to enable session support for the persistent class. For

example:

#pragma db object session // Enable.
class person
{
 ...
};

#pragma db object session(true) // Enable.
class employee
{
 ...
};

#pragma db object session(false) // Disable.
class employer
{
 ...
};

Revision 2.6, March 2025246 C++ Object Persistence with ODB

14.1.9 polymorphic

Session support is disabled by default unless the --generate-session ODB compiler

option is specified or session support is enabled at the namespace level (Section 14.5.4,

"session"). For more information on sessions, refer to Chapter 11, "Session".

14.1.11 definition

The definition specifier specifies an alternative definition location for the persistent class.

By default, the ODB compiler generates the database support code for a persistent class when we

compile the header file that defines this class. However, if the definition specifier is used,

then the ODB compiler will instead generate the database support code when we compile the

header file containing this pragma.

For more information on this functionality, refer to Section 14.3.7, "definition".

14.1.12 transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members in

the persistent class as transient (Section 14.4.1, "transient"). This specifier is primarily useful

when declaring virtual data members, as discussed in Section 14.4.13, "virtual".

14.1.13 sectionable

The sectionable specifier instructs the ODB compiler to generate support for the addition of

new object sections in derived classes in a hierarchy with the optimistic concurrency model. For

more information on this functionality, refer to Section 9.2, "Sections and Optimistic Concur­

rency".

14.1.14 deleted

The deleted specifier marks the persistent class as soft-deleted. The single required argument

to this specifier is the deletion version. For more information on this functionality, refer to

Section 13.4, "Soft Object Model Changes".

14.1.15 bulk

The bulk specifier enables bulk operation support for the persistent class. The single required

argument to this specifier is the batch size. For more information on this functionality, refer to

Section 15.3, "Bulk Database Operations".

247Revision 2.6, March 2025 C++ Object Persistence with ODB

14.1.11 definition

14.1.16 options

The options specifier specifies additional table definition options that should be used for the

persistent class. For example:

#pragma db object options("PARTITION BY RANGE (age)")
class person
{
 ...

 unsigned short age_;
};

Table definition options for a container table can be specified with the options data member

specifier (Section 14.4.8, "options"). For example:

#pragma db object
class person
{
 ...

 #pragma db options("PARTITION BY RANGE (index)")
 std::vector<std::string> aliases_;
};

14.2 View Type Pragmas

A pragma with the view qualifier declares a C++ class as a view type. The qualifier can be

optionally followed, in any order, by one or more specifiers summarized in the table below:

Specifier Summary Section

object object associated with a view 14.2.1

table table associated with a view 14.2.2

query view query condition 14.2.3

pointer pointer type for a view 14.2.4

callback database operations callback 14.2.5

definition definition location for a view 14.2.6

transient all non-virtual data members in a view are transient 14.2.7

Revision 2.6, March 2025248 C++ Object Persistence with ODB

14.2 View Type Pragmas

For more information on view types refer to Chapter 10, "Views".

14.2.1 object

The object specifier specifies a persistent class that should be associated with the view. For

more information on object associations refer to Section 10.1, "Object Views".

14.2.2 table

The table specifier specifies a database table that should be associated with the view. For more

information on table associations refer to Section 10.3, "Table Views".

14.2.3 query

The query specifier specifies a query condition and, optionally, result modifiers for an object or

table view or a native SQL query for a native view. An empty query specifier indicates that a

native SQL query is provided at runtime. For more information on query conditions refer to

Section 10.5, "View Query Conditions". For more information on native SQL queries, refer to

Section 10.6, "Native Views".

14.2.4 pointer

The pointer specifier specifies the view pointer type for the view class. Similar to objects, the

view pointer type is used to return dynamically allocated instances of a view class. The semantics

of the pointer specifier for a view are the same as those of the pointer specifier for an

object (Section 14.1.2, "pointer").

14.2.5 callback

The callback specifier specifies the view class member function that should be called before

and after an instance of this view class is created as part of the query result iteration. The seman­

tics of the callback specifier for a view are similar to those of the callback specifier for an

object (Section 14.1.7, "callback") except that the only events that can trigger a callback call

in the case of a view are pre_load and post_load.

14.2.6 definition

The definition specifier specifies an alternative definition location for the view class. By

default, the ODB compiler generates the database support code for a view class when we compile

the header file that defines this class. However, if the definition specifier is used, then the

ODB compiler will instead generate the database support code when we compile the header file

containing this pragma.

249Revision 2.6, March 2025 C++ Object Persistence with ODB

14.2.1 object

For more information on this functionality, refer to Section 14.3.7, "definition".

14.2.7 transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members in

the view class as transient (Section 14.4.1, "transient"). This specifier is primarily useful

when declaring virtual data members, as discussed in Section 14.4.13, "virtual".

14.3 Value Type Pragmas

A pragma with the value qualifier describes a value type. It can be optionally followed, in any

order, by one or more specifiers summarized in the table below:

Revision 2.6, March 2025250 C++ Object Persistence with ODB

14.3 Value Type Pragmas

Specifier Summary Section

type database type for a value type 14.3.1

id_type
database type for a value type when used as an

object id
14.3.2

null/not_null type can/cannot be NULL 14.3.3

default default value for a value type 14.3.4

options database options for a value type 14.3.5

readonly composite value type is read-only 14.3.6

definition definition location for a composite value type 14.3.7

transient
all non-virtual data members in a composite

value are transient
14.3.8

unordered ordered container should be stored unordered 14.3.9

index_type database type for a container’s index type 14.3.10

key_type database type for a container’s key type 14.3.11

value_type database type for a container’s value type 14.3.12

value_null/value_not_null container’s value can/cannot be NULL 14.3.13

id_options database options for a container’s id column 14.3.14

index_options database options for a container’s index column 14.3.15

key_options database options for a container’s key column 14.3.16

value_options database options for a container’s value column 14.3.17

id_column column name for a container’s object id 14.3.18

index_column column name for a container’s index 14.3.19

key_column column name for a container’s key 14.3.20

value_column column name for a container’s value 14.3.21

Many of the value type specifiers have corresponding member type specifiers with the same

names (Section 14.4, "Data Member Pragmas"). The behavior of such specifiers for members is

similar to that for value types. The only difference is the scope. A particular value type specifier

applies to all the members of this value type that don’t have a pre-member version of the speci­

fier, while the member specifier always applies only to a single member. Also, with a few excep­

251Revision 2.6, March 2025 C++ Object Persistence with ODB

14.3 Value Type Pragmas

tions, member specifiers take precedence over and override parameters specified with value spec­

ifiers.

14.3.1 type

The type specifier specifies the native database type that should be used for data members of

this type. For example:

#pragma db value(bool) type("INT")

#pragma db object
class person
{
 ...

 bool married_; // Mapped to INT NOT NULL database type.
};

The ODB compiler provides the default mapping between common C++ types, such as bool,

int, and std::string and the database types for each supported database system. For more

information on the default mapping, refer to Part II, "Database Systems". The null and

not_null (Section 14.3.3, "null/not_null") specifiers can be used to control the NULL

semantics of a type.

In the above example we changed the mapping for the bool type which is now mapped to the

INT database type. In this case, the value pragma is all that is necessary since the ODB

compiler will be able to figure out how to store a boolean value as an integer in the database.

However, there could be situations where the ODB compiler will not know how to handle the

conversion between the C++ and database representations of a value. Consider, as an example, a

situation where the boolean value is stored in the database as a string:

#pragma db value(bool) type("VARCHAR(5)")

The possible database values for the C++ true value could be "true", or "TRUE", or

"True". Or, maybe, all of the above could be valid. The ODB compiler has no way of knowing

how your application wants to convert bool to a string and back. To support such custom value

type mappings, ODB allows you to provide your own database conversion functions by specializ­

ing the value_traits class template. The mapping example in the odb-examples
package shows how to do this for all the supported database systems.

14.3.2 id_type

The id_type specifier specifies the native database type that should be used for data members

of this type that are designated as object identifiers (Section 14.4.1, "id"). In combination with

the type specifier (Section 14.3.1, "type") id_type allows you to map a C++ type differently

Revision 2.6, March 2025252 C++ Object Persistence with ODB

14.3.1 type

depending on whether it is used in an ordinary member or an object id. For example:

#pragma db value(std::string) type("TEXT") id_type("VARCHAR(64)")

#pragma db object
class person
{
 ...

 #pragma db id
 std::string email_; // Mapped to VARCHAR(64) NOT NULL.

 std::string name_; // Mapped to TEXT NOT NULL.
};

Note that there is no corresponding member type specifier for id_type since the desired result

can be achieved with just the type specifier, for example:

#pragma db object
class person
{
 ...

 #pragma db id type("VARCHAR(128)")
 std::string email_;
};

14.3.3 null/not_null

The null and not_null specifiers specify that a value type or object pointer can or cannot be

NULL, respectively. By default, value types are assumed not to allow NULL values while object

pointers are assumed to allow NULL values. Data members of types that allow NULL values are

mapped in a relational database to columns that allow NULL values. For example:

using string_ptr = std::shared_ptr<std::string>;
#pragma db value(string_ptr) type("TEXT") null

#pragma db object
class person
{
 ...

 string_ptr name_; // Mapped to TEXT NULL.
};

using person_ptr = std::shared_ptr<person>;
#pragma db value(person_ptr) not_null

253Revision 2.6, March 2025 C++ Object Persistence with ODB

14.3.3 null/not_null

The NULL semantics can also be specified on the per-member basis (Section 14.4.6,

"null/not_null"). If both a type and a member have null/not_null specifiers, then the

member specifier takes precedence. If a member specifier relaxes the NULL semantics (that is, if

a member has the null specifier and the type has the explicit not_null specifier), then a

warning is issued.

It is also possible to override a previously specified null/not_null specifier. This is primarily

useful if a third-party type, for example, one provided by a profile library (Part III, "Profiles"),

allows NULL values but in your object model data members of this type should never be NULL.

In this case you can use the not_null specifier to disable NULL values for this type for the

entire translation unit. For example:

// By default, null_string allows NULL values.
//
#include <null-string.hxx>

// Disable NULL values for all the null_string data members.
//
#pragma db value(null_string) not_null

For a more detailed discussion of the NULL semantics for values, refer to Section 7.3, "Pointers

and NULL Value Semantics". For a more detailed discussion of the NULL semantics for object

pointers, refer to Chapter 6, "Relationships".

14.3.4 default

The default specifier specifies the database default value that should be used for data members

of this type. For example:

#pragma db value(std::string) default("")

#pragma db object
class person
{
 ...

 std::string name_; // Mapped to TEXT NOT NULL DEFAULT ’’.
};

The semantics of the default specifier for a value type are similar to those of the default

specifier for a data member (Section 14.4.7, "default").

Revision 2.6, March 2025254 C++ Object Persistence with ODB

14.3.4 default

14.3.5 options

The options specifier specifies additional column definition options that should be used for

data members of this type. For example:

#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person
{
 ...

 std::string name_; // Mapped to TEXT NOT NULL COLLATE binary.
};

The semantics of the options specifier for a value type are similar to those of the options

specifier for a data member (Section 14.4.8, "options").

14.3.6 readonly

The readonly specifier specifies that the composite value type is read-only. Changes to data

members of a read-only composite value type are ignored when updating the database state of an

object (Section 3.10, "Updating Persistent Objects") containing such a value type. Note that this

specifier is only valid for composite value types. For example:

#pragma db value readonly
class person_name
{
 ...
};

Read-only and read-write composite values can derive from each other without any restrictions.

When a read-only value derives from a read-write value, the resulting whole value is read-only,

including the part corresponding to the read-write base. On the other hand, when a read-write

value derives from a read-only value, all the data members that correspond to the read-only base

are treated as read-only while the rest is treated as read-write.

Note that it is also possible to declare individual data members (Section 14.4.12, "readonly")

as well as whole objects (Section 14.1.4, "readonly") as read-only.

14.3.7 definition

The definition specifier specifies an alternative definition location for the composite value

type. By default, the ODB compiler generates the database support code for a composite value

type when we compile the header file that defines this value type. However, if the definition

specifier is used, then the ODB compiler will instead generate the database support code when we

255Revision 2.6, March 2025 C++ Object Persistence with ODB

14.3.5 options

compile the header file containing this pragma.

This mechanism is primarily useful for converting third-party types to ODB composite value

types. In such cases we normally cannot modify the header files to add the necessary pragmas. It

is also often inconvenient to compile these header files with the ODB compiler. With the defi­
nition specifier we can create a wrapper header that contains the necessary pragmas and

instructs the ODB compiler to generate the database support code for a third-party type when we

compile the wrapper header. As an example, consider struct timeval that is defined in the

<sys/time.h> system header. This type has the following (or similar) definition:

struct timeval
{
 long tv_sec;
 long tv_usec;
};

If we would like to make this type an ODB composite value type, then we can create a wrapper

header, for example time-mapping.hxx, with the following content:

#ifndef TIME_MAPPING_HXX
#define TIME_MAPPING_HXX

#include <sys/time.h>

#pragma db value(timeval) definition
#pragma db member(timeval::tv_sec) column("sec")
#pragma db member(timeval::tv_usec) column("usec")

#endif // TIME_MAPPING_HXX

If we now compile this header with the ODB compiler, the resulting

time-mapping-odb.?xx files will contain the database support code for struct
timeval. To use timeval in our persistent classes, we simply include the

time-mapping.hxx header:

#include <sys/time.h>
#include "time-mapping.hxx"

#pragma db object
class object
{
 timeval timestamp;
};

Revision 2.6, March 2025256 C++ Object Persistence with ODB

14.3.7 definition

14.3.8 transient

The transient specifier instructs the ODB compiler to treat all non-virtual data members in

the composite value type as transient (Section 14.4.1, "transient"). This specifier is primarily

useful when declaring virtual data members, as discussed in Section 14.4.13, "virtual".

14.3.9 unordered

The unordered specifier specifies that the ordered container should be stored unordered in the

database. The database table for such a container will not contain the index column and the order

in which elements are retrieved from the database may not be the same as the order in which they

were stored. For example:

using names = std::vector<std::string>;
#pragma db value(names) unordered

For a more detailed discussion of ordered containers and their storage in the database, refer to

Section 5.1, "Ordered Containers".

14.3.10 index_type

The index_type specifier specifies the native database type that should be used for the ordered

container’s index column. The semantics of index_type are similar to those of the type spec­

ifier (Section 14.3.1, "type"). The native database type is expected to be an integer type. For

example:

using names = std::vector<std::string>;
#pragma db value(names) index_type("SMALLINT UNSIGNED")

14.3.11 key_type

The key_type specifier specifies the native database type that should be used for the map

container’s key column. The semantics of key_type are similar to those of the type specifier

(Section 14.3.1, "type"). For example:

using age_weight_map = std::map<unsigned short, float>;
#pragma db value(age_weight_map) key_type("INT UNSIGNED")

14.3.12 value_type

The value_type specifier specifies the native database type that should be used for the

container’s value column. The semantics of value_type are similar to those of the type spec­

ifier (Section 14.3.1, "type"). For example:

257Revision 2.6, March 2025 C++ Object Persistence with ODB

14.3.8 transient

using names = std::vector<std::string>;
#pragma db value(names) value_type("VARCHAR(255)")

The value_null and value_not_null (Section 14.3.13,

"value_null/value_not_null") specifiers can be used to control the NULL semantics of a

value column.

14.3.13 value_null/value_not_null

The value_null and value_not_null specifiers specify that the container type’s element

value can or cannot be NULL, respectively. The semantics of value_null and

value_not_null are similar to those of the null and not_null specifiers (Section 14.3.3,

"null/not_null"). For example:

#pragma db object
class account
{
 ...
};

using accounts = std::vector<std::shared_ptr<account>>;
#pragma db value(accounts) value_not_null

For set and multiset containers (Section 5.2, "Set and Multiset Containers") the element value is

automatically treated as not allowing a NULL value.

14.3.14 id_options

The id_options specifier specifies additional column definition options that should be used

for the container’s id column. For example:

using nicknames = std::vector<std::string>;
#pragma db value(nicknames) id_options("COLLATE binary")

The semantics of the id_options specifier for a container type are similar to those of the

id_options specifier for a container data member (Section 14.4.29, "id_options").

14.3.15 index_options

The index_options specifier specifies additional column definition options that should be

used for the container’s index column. For example:

using nicknames = std::vector<std::string>;
#pragma db value(nicknames) index_options("ZEROFILL")

Revision 2.6, March 2025258 C++ Object Persistence with ODB

14.3.13 value_null/value_not_null

The semantics of the index_options specifier for a container type are similar to those of the

index_options specifier for a container data member (Section 14.4.30,

"index_options").

14.3.16 key_options

The key_options specifier specifies additional column definition options that should be used

for the container’s key column. For example:

using properties = std::map<std::string, std::string>;
#pragma db value(properties) key_options("COLLATE binary")

The semantics of the key_options specifier for a container type are similar to those of the

key_options specifier for a container data member (Section 14.4.31, "key_options").

14.3.17 value_options

The value_options specifier specifies additional column definition options that should be

used for the container’s value column. For example:

using nicknames = std::set<std::string>;
#pragma db value(nicknames) value_options("COLLATE binary")

The semantics of the value_options specifier for a container type are similar to those of the

value_options specifier for a container data member (Section 14.4.32,

"value_options").

14.3.18 id_column

The id_column specifier specifies the column name that should be used to store the object id in

the container’s table. For example:

using names = std::vector<std::string>;
#pragma db value(names) id_column("id")

If the column name is not specified, then object_id is used by default.

14.3.19 index_column

The index_column specifier specifies the column name that should be used to store the

element index in the ordered container’s table. For example:

using names = std::vector<std::string>;
#pragma db value(names) index_column("name_number")

259Revision 2.6, March 2025 C++ Object Persistence with ODB

14.3.16 key_options

If the column name is not specified, then index is used by default.

14.3.20 key_column

The key_column specifier specifies the column name that should be used to store the key in the

map container’s table. For example:

using age_weight_map = std::map<unsigned short, float>;
#pragma db value(age_weight_map) key_column("age")

If the column name is not specified, then key is used by default.

14.3.21 value_column

The value_column specifier specifies the column name that should be used to store the

element value in the container’s table. For example:

using age_weight_map = std::map<unsigned short, float>;
#pragma db value(age_weight_map) value_column("weight")

If the column name is not specified, then value is used by default.

14.4 Data Member Pragmas

A pragma with the member qualifier or a positioned pragma without a qualifier describes a data

member. It can be optionally followed, in any order, by one or more specifiers summarized in the

table below:

Specifier Summary Section

id member is an object id 14.4.1

auto id is assigned by the database 14.4.2

type database type for a member 14.4.3

id_type
database type for a member when used as an

object id
14.4.4

get/set/access member accessor/modifier expressions 14.4.5

null/not_null member can/cannot be NULL 14.4.6

default default value for a member 14.4.7

options database options for a member 14.4.8

Revision 2.6, March 2025260 C++ Object Persistence with ODB

14.4 Data Member Pragmas

column
column name for a member of an object or

composite value
14.4.9

column column name for a member of a view 14.4.10

transient member is not stored in the database 14.4.11

readonly member is read-only 14.4.12

virtual declare a virtual data member 14.4.13

inverse
member is an inverse side of a bidirectional

relationship
14.4.14

on_delete ON DELETE clause for object pointer member 14.4.15

version member stores object version 14.4.16

index define database index for a member 14.4.17

unique define unique database index for a member 14.4.18

unordered ordered container should be stored unordered 14.4.19

table table name for a container 14.4.20

load/update loading/updating behavior for a section 14.4.21

section member belongs to a section 14.4.22

added member is soft-added 14.4.23

deleted member is soft-deleted 14.4.24

index_type database type for a container’s index type 14.4.25

key_type database type for a container’s key type 14.4.26

value_type database type for a container’s value type 14.4.27

value_null/value_not_null container’s value can/cannot be NULL 14.4.28

id_options database options for a container’s id column 14.4.29

index_options database options for a container’s index column 14.4.30

key_options database options for a container’s key column 14.4.31

value_options database options for a container’s value column 14.4.32

id_column column name for a container’s object id 14.4.33

261Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4 Data Member Pragmas

index_column column name for a container’s index 14.4.34

key_column column name for a container’s key 14.4.35

value_column column name for a container’s value 14.4.36

points_to establish relationship without object pointer 14.4.37

Many of the member specifiers have corresponding value type specifiers with the same names

(Section 14.3, "Value Type Pragmas"). The behavior of such specifiers for members is similar to

that for value types. The only difference is the scope. A particular value type specifier applies to

all the members of this value type that don’t have a pre-member version of the specifier, while

the member specifier always applies only to a single member. Also, with a few exceptions,

member specifiers take precedence over and override parameters specified with value specifiers.

14.4.1 id

The id specifier specifies that the data member contains the object id. In a relational database, an

identifier member is mapped to a primary key. For example:

#pragma db object
class person
{
 ...

 #pragma db id
 std::string email_;
};

Normally, every persistent class has a data member designated as an object’s identifier. However,

it is possible to declare a persistent class without an id using the object no_id specifier (Section

14.1.6, "no_id").

Note also that the id specifier cannot be used for data members of composite value types or

views.

14.4.2 auto

The auto specifier specifies that the object’s identifier is automatically assigned by the database.

Only a member that was designated as an object id can have this specifier. For example:

Revision 2.6, March 2025262 C++ Object Persistence with ODB

14.4.1 id

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long long id_;
};

Note that automatically-assigned object ids are not reused. If you have a high object turnover

(that is, objects are routinely made persistent and then erased), then care must be taken not to run

out of object ids. In such situations, using a 64-bit integer as the identifier type is a safe choice.

For additional information on the automatic identifier assignment, refer to Section 3.8, "Making

Objects Persistent".

Note also that the auto specifier cannot be specified for data members of composite value types

or views.

14.4.3 type

The type specifier specifies the native database type that should be used for the data member.

For example:

#pragma db object
class person
{
 ...

 #pragma db type("INT")
 bool married_;
};

The null and not_null (Section 14.4.6, "null/not_null") specifiers can be used to

control the NULL semantics of a data member. It is also possible to specify the database type on

the per-type instead of the per-member basis using the value type specifier (Section 14.3.1,

"type").

14.4.4 id_type

The id_type specifier specifies the native database type that should be used for the data

member when it is part of an object identifier. This specifier only makes sense when applied to a

member of a composite value type that is used for both id and non-id members. For example:

263Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.3 type

#pragma db value
class name
{
 ...

 #pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
 std::string first_;

 #pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
 std::string last_;
};

#pragma db object
class person
{
 ...

 #pragma db id
 name name_; // name_.first_, name_.last_ mapped to VARCHAR(64)

 name alias_; // alias_.first_, alias_.last_ mapped to VARCHAR(256)
};

14.4.5 get/set/access

The get and set specifiers specify the data member accessor and modifier expressions, respec­

tively. If provided, the generated database support code will use these expressions to access and

modify the data member when performing database operations. The access specifier can be

used as a shortcut to specify both the accessor and modifier if they happen to be the same.

In its simplest form the accessor or modifier expression can be just a name. Such a name should

resolve either to another data member of the same type or to a suitable accessor or modifier

member function. For example:

#pragma db object
class person
{
 ...

public:
 const std::string& name () const;
 void name (const std::string&);
private:
 #pragma db access(name)
 std::string name_;
};

Revision 2.6, March 2025264 C++ Object Persistence with ODB

14.4.5 get/set/access

A suitable accessor function is a const member function that takes no arguments and whose

return value can be implicitly converted to the const reference to the member type

(const std::string& in the example above). An accessor function that returns a const

reference to the data member is called by-reference accessor. Otherwise, it is called by-value

accessor.

A suitable modifier function can be of two forms. It can be the so called by-reference modifier

which is a member function that takes no arguments and returns a non-const reference to the

data member (std::string& in the example above). Alternatively, it can be the so called

by-value modifier which is a member function taking a single argument — the new value — that

can be implicitly initialized from a variable of the member type (std::string in the example

above). The return value of a by-value modifier, if any, is ignored. If both by-reference and

by-value modifiers are available, then ODB prefers the by-reference version since it is more effi­

cient. For example:

#pragma db object
class person
{
 ...

public:
 std::string get_name () const; // By-value accessor.
 std::string& set_name (); // By-reference modifier.
 void set_name (std::string const&); // By-value modifier.
private:
 #pragma db get(get_name) \ // Uses by-value accessor.
 set(set_name) // Uses by-reference modifier.
 std::string name_;
};

Note that in many cases it is not necessary to specify accessor and modifier functions explicitly

since the ODB compiler will try to discover them automatically in case the data member will be

inaccessible to the generated code. In particular, in both of the above examples the ODB compiler

would have successfully discovered the necessary functions. For more information on this func­

tionality, refer to Section 3.2, "Declaring Persistent Objects and Values".

Note also that by-value accessors and by-value modifiers cannot be used for certain data

members in certain situations. These limitations are discussed in more detail later in this section.

Accessor and modifier expressions can be more elaborate than simple names. An accessor

expression is any C++ expression that can be used to initialize a const reference to the member

type. Similar to accessor functions, which are just a special case of accessor expressions, an

accessor expression that evaluates to a const reference to the data member is called by-refer­

ence accessor expression. Otherwise, it is called by-value accessor expression.

265Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.5 get/set/access

Modifier expressions can also be of two forms: by-reference modifier expression and by-value

modifier expression (again, modifier functions are just a special case of modifier expressions). A

by-reference modifier expression is any C++ expression that evaluates to the non-const refer­

ence to the member type. A by-value modifier expression can be a single or multiple (separated

by semicolon) C++ statements with the effect of setting the new member value.

There are three special placeholders that are recognized by the ODB compiler in accessor and

modifier expressions. The first is the this keyword which denotes a reference (note: not a

pointer) to the persistent object. In accessor expressions this reference is const while in modi­

fier expressions it is non-const. If an expression does not contain the this placeholder, then

the ODB compiler automatically prefixes it with the this. sequence.

The second placeholder, the (?) sequence, is used to denote the new value in by-value modifier

expressions. The ODB compiler replaces the question mark with the variable name, keeping the

surrounding parenthesis.

The third placeholder, the (!) sequence, is used to denote the database instance in the modifier

expressions. The ODB compiler replaces the exclamation mark with the reference to the database,

keeping the surrounding parenthesis. The database instance can, for example, be used to load an

object pointer.

The following example shows a few more interesting accessor and modifier expressions:

#pragma db value
struct point
{
 point (int, int);

 int x;
 int y;
};

#pragma db object
class person
{
 ...

 public:
 const char* name () const;
 void name (const char*);
 private:
 #pragma db get(std::string (this.name ())) \
 set(name ((?).c_str ())) // The same as this.name (...).
 std::string name_;

 public:
 const std::unique_ptr<account>& acc () const;
 void acc (std::unique_ptr<account>);

Revision 2.6, March 2025266 C++ Object Persistence with ODB

14.4.5 get/set/access

 private:
 #pragma db set(acc (std::move (?)))
 std::unique_ptr<account> acc_;

 public:
 int loc_x () const
 int loc_y () const
 void loc_x (int);
 void loc_y (int);
 private:
 #pragma db get(point (this.loc_x (), this.loc_y ())) \
 set(this.loc_x ((?).x); this.loc_y ((?).y))
 point loc_;
};

When the data member is of an array type, then the terms "reference" and "member type" in the

above discussion should be replaced with "pointer" and "array element type", respectively. That

is, the accessor expression for an array member is any C++ expression that can be used to initial­

ize a const pointer to the array element type, and so on. The following example shows common

accessor and modifier signatures for array members:

#pragma db object
class person
{
 ...

 public:
 const char* id () const; // By-reference accessor.
 void id (const char*); // By-value modifier.
 private:
 char id_[16];

 public:
 const char* pub_key () const; // By-reference accessor.
 char* pub_key (); // By-reference modifier.
 private:
 char pub_key_[2048];
};

Accessor and modifier expressions can be used with data members of simple value, composite

value, container, and object pointer types. They can be used for data members in persistent

classes, composite value types, and views. There is also a mechanism related to accessors and

modifiers called virtual data members and which is discussed in Section 14.4.13, "virtual".

There are, however, certain limitations when it comes to using by-value accessor and modifier

expressions. First of all, if a by-value modifier is used, then the data member type should be

default-constructible. Furthermore, a composite value type that has a container member cannot be

modified with a by-value modifier. Only a by-reference modifier expression can be used. The

267Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.5 get/set/access

ODB compiler will detect such cases and issue diagnostics. For example:

#pragma db value
struct name
{
 std::string first_;
 std::string last_;
 std::vector<std::string> aliases_;
};

#pragma db object
class person
{
 ...

public:
 const name& name () const;
 void name (const name&);
private:
 #pragma db access(name) // Error: by-value modifier.
 name name_;
};

In certain database systems it is also not possible to use by-value accessor and modifier expres­

sion with certain database types. The ODB compiler is only able to detect such cases and issue

diagnostics if you specified accessor/modifier function names as opposed to custom expressions.

For more information on these database and type-specific limitations, refer to the "Limitations"

sections in Part II, "Database Systems".

14.4.6 null/not_null

The null and not_null specifiers specify that the data member can or cannot be NULL,

respectively. By default, data members of basic value types for which database mapping is

provided by the ODB compiler do not allow NULL values while data members of object pointers

allow NULL values. Other value types, such as those provided by the profile libraries (Part III,

"Profiles"), may or may not allow NULL values, depending on the semantics of each value type.

Consult the relevant documentation to find out more about the NULL semantics for such value

types. A data member containing the object id (Section 14.4.1, "id") is automatically treated as

not allowing a NULL value. Data members that allow NULL values are mapped in a relational

database to columns that allow NULL values. For example:

#pragma db object
class person
{
 ...

 #pragma db null
 std::string name_;

Revision 2.6, March 2025268 C++ Object Persistence with ODB

14.4.6 null/not_null

};

#pragma db object
class account
{
 ...

 #pragma db not_null
 std::shared_ptr<person> holder_;
};

The NULL semantics can also be specified on the per-type basis (Section 14.3.3,

"null/not_null"). If both a type and a member have null/not_null specifiers, then the

member specifier takes precedence. If a member specifier relaxes the NULL semantics (that is, if

a member has the null specifier and the type has the explicit not_null specifier), then a

warning is issued.

For a more detailed discussion of the NULL semantics for values, refer to Section 7.3, "Pointers

and NULL Value Semantics". For a more detailed discussion of the NULL semantics for object

pointers, refer to Chapter 6, "Relationships".

14.4.7 default

The default specifier specifies the database default value that should be used for the data

member. For example:

#pragma db object
class person
{
 ...

 #pragma db default(-1)
 int age_; // Mapped to INT NOT NULL DEFAULT -1.
};

A default value can be the special null keyword, a bool literal (true or false), an integer

literal, a floating point literal, a string literal, or an enumerator name. If you need to specify a

default value that is an expression, for example an SQL function call, then you can use the

options specifier (Section 14.4.8, "options") instead. For example:

enum gender {male, female, undisclosed};

#pragma db object
class person
{
 ...

 #pragma db default(null)

269Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.7 default

 odb::nullable<std::string> middle_; // DEFAULT NULL

 #pragma db default(false)
 bool married_; // DEFAULT 0/FALSE

 #pragma db default(0.0)
 float weight_; // DEFAULT 0.0

 #pragma db default("Mr")
 string title_; // DEFAULT ’Mr’

 #pragma db default(undisclosed)
 gender gender_; // DEFAULT 2/’undisclosed’

 #pragma db options("DEFAULT CURRENT_TIMESTAMP()")
 date timestamp_; // DEFAULT CURRENT_TIMESTAMP()
};

Default values specified as enumerators are only supported for members that are mapped to an

ENUM or an integer type in the database, which is the case for the automatic mapping of C++

enums and enum classes to suitable database types as performed by the ODB compiler. If you

have mapped a C++ enum or enum class to another database type, then you should use a literal

corresponding to that type to specify the default value. For example:

enum gender {male, female, undisclosed};
#pragma db value(gender) type("VARCHAR(11)")

#pragma db object
class person
{
 ...

 #pragma db default("undisclosed")
 gender gender_; // DEFAULT ’undisclosed’
};

A default value can also be specified on the per-type basis (Section 14.3.4, "default"). An

empty default specifier can be used to reset a default value that was previously specified on

the per-type basis. For example:

#pragma db value(std::string) default("")

#pragma db object
class person
{
 ...

 #pragma db default()
 std::string name_; // No default value.
};

Revision 2.6, March 2025270 C++ Object Persistence with ODB

14.4.7 default

A data member containing the object id (Section 14.4.1, "id") is automatically treated as not

having a default value even if its type specifies a default value.

Note also that default values do not affect the generated C++ code in any way. In particular, no

automatic initialization of data members with their default values is performed at any point. If

you need such an initialization, you will need to implement it yourself, for example, in your

persistent class constructors. The default values only affect the generated database schemas and,

in the context of ODB, are primarily useful for schema evolution.

Additionally, the default specifier cannot be specified for view data members.

14.4.8 options

The options specifier specifies additional column definition options that should be used for the

data member. For example:

#pragma db object
class person
{
 ...

 #pragma db options("CHECK(email != ’’)")
 std::string email_; // Mapped to TEXT NOT NULL CHECK(email != ’’).
};

Note that if specified for the container member, then instead of the column definition options it

specifies the table definition options for the container table (Section 14.1.16, "options").

Options can also be specified on the per-type basis (Section 14.3.5, "options"). By default,

options are accumulating. That is, the ODB compiler first adds all the options specified for a

value type followed by all the options specified for a data member. To clear the accumulated

options at any point in this sequence you can use an empty options specifier. For example:

#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person
{
 ...

 std::string first_; // TEXT NOT NULL COLLATE binary

 #pragma db options("CHECK(last != ’’)")
 std::string last_; // TEXT NOT NULL COLLATE binary CHECK(last != ’’)

 #pragma db options()
 std::string title_; // TEXT NOT NULL

271Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.8 options

 #pragma db options() options("CHECK(email != ’’)")
 std::string email_; // TEXT NOT NULL CHECK(email != ’’)
};

ODB provides dedicated specifiers for specifying column types (Section 14.4.3, "type"), NULL
constraints (Section 14.4.6, "null/not_null"), and default values (Section 14.4.7,

"default"). For ODB to function correctly these specifiers should always be used instead of

the opaque options specifier for these components of a column definition.

Note also that the options specifier cannot be specified for view data members.

14.4.9 column (object, composite value)

The column specifier specifies the column name that should be used to store the data member of

a persistent class or composite value type in a relational database. For example:

#pragma db object
class person
{
 ...

 #pragma db id column("person_id")
 unsigned long long id_;
};

For a member of a composite value type, the column specifier specifies the column name prefix.

Refer to Section 7.2.2, "Composite Value Column and Table Names" for details.

If the column name is not specified, it is derived from the member’s so-called public name. A

public member name is obtained by removing the common data member name decorations, such

as leading and trailing underscores, the m_ prefix, etc.

14.4.10 column (view)

The column specifier can be used to specify the associated object data member, the potentially

qualified column name, or the column expression for the data member of a view class. For more

information, refer to Section 10.1, "Object Views" and Section 10.3, "Table Views".

14.4.11 transient

The transient specifier instructs the ODB compiler not to store the data member in the

database. For example:

Revision 2.6, March 2025272 C++ Object Persistence with ODB

14.4.9 column (object, composite value)

#pragma db object
class person
{
 ...

 date born_;

 #pragma db transient
 unsigned short age_; // Computed from born_.
};

This pragma is usually used on computed members, pointers and references that are only mean­

ingful in the application’s memory, as well as utility members such as mutexes, etc.

14.4.12 readonly

The readonly specifier specifies that the data member of an object or composite value type is

read-only. Changes to a read-only data member are ignored when updating the database state of

an object (Section 3.10, "Updating Persistent Objects") containing such a member. Since views

are read-only, it is not necessary to use this specifier for view data members. Object id (Section

14.4.1, "id") and inverse (Section 14.4.14, "inverse") data members are automatically treated

as read-only and must not be explicitly declared as such. For example:

#pragma db object
class person
{
 ...

 #pragma db readonly
 date born_;
};

Besides simple value members, object pointer, container, and composite value members can also

be declared read-only. A change of a pointed-to object is ignored when updating the state of a

read-only object pointer. Similarly, any changes to the number or order of elements or to the

element values themselves are ignored when updating the state of a read-only container. Finally,

any changes to the members of a read-only composite value type are also ignored when updating

the state of such a composite value.

ODB automatically treats const data members as read-only. For example, the following

person object is equivalent to the above declaration for the database persistence purposes:

273Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.12 readonly

#pragma db object
class person
{
 ...

 const date born_; // Automatically read-only.
};

When declaring an object pointer const, make sure to declare the pointer as const rather than

(or in addition to) the object itself. For example:

#pragma db object
class person
{
 ...

 const person* father_; // Read-write pointer to a read-only object.
 person* const mother_; // Read-only pointer to a read-write object.
};

Note that in case of a wrapper type (Section 7.3, "Pointers and NULL Value Semantics"), both the

wrapper and the wrapped type must be const in order for the ODB compiler to automatically

treat the data member as read-only. For example:

#pragma db object
class person
{
 ...

 const std::unique_ptr<const date> born_;
};

Read-only members are useful when dealing with asynchronous changes to the state of a data

member in the database which should not be overwritten. In other cases, where the state of a data

member never changes, declaring such a member read-only allows ODB to perform more effi­

cient object updates. In such cases, however, it is conceptually more correct to declare such a data

member as const rather than as read-only.

Note that it is also possible to declare composite value types (Section 14.3.6, "readonly") as

well as whole objects (Section 14.1.4, "readonly") as read-only.

14.4.13 virtual

The virtual specifier is used to declare a virtual data member in an object, view, or composite

value type. A virtual data member is an imaginary data member that is only used for the purpose

of database persistence. A virtual data member does not actually exist (that is, occupy space) in

the C++ class. Note also that virtual data members have nothing to do with C++ virtual functions

Revision 2.6, March 2025274 C++ Object Persistence with ODB

14.4.13 virtual

or virtual inheritance. Specifically, no virtual function call overhead is incurred when using

virtual data members.

To declare a virtual data member we must specify the data member name using the member

specifier. We must also specify the data member type with the virtual specifier. Finally, the

virtual data member declaration must also specify the accessor and modifier expressions, unless

suitable accessor and modifier functions can automatically be found by the ODB compiler

(Section 14.4.5, "get/set/access"). For example:

#pragma db object
class person
{
 ...

 // Transient real data member that actually stores the data.
 //
 #pragma db transient
 std::string name_;

 // Virtual data member.
 //
 #pragma db member(name) virtual(std::string) access(name_)
};

From the pragma language point of view, a virtual data member behaves exactly like a normal

data member. Specifically, we can reference the virtual data member after it has been declared

and use positioned pragmas before its declaration. For example:

#pragma db object
class person
{
 ...

 #pragma db transient
 std::string name_;

 #pragma db access(name_)
 #pragma db member(name) virtual(std::string)
};

#pragma db member(person::name) column("person_name")
#pragma db index member(person::name)

We can also declare a virtual data member outside the class scope:

275Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.13 virtual

#pragma db object
class person
{
 ...

 std::string name_;
};

#pragma db member(person::name_) transient
#pragma db member(person::name) virtual(std::string) access(name_)

The order of data members determines the order of columns in the resulting table. The order of

virtual data members in relation to other data members (virtual or not) is the order of declaration,

with virtual data members declared outside of the class coming last. This order, however, can be

adjusted with the before and after specifiers. One of these specifiers without a parameter

places the virtual member at the beginning or at the end of the members list, respectively. Alter­

natively, we can specify the member (virtual or not) before/after which this virtual member

should be placed. For example:

#pragma db object
class person
{
 ...

 #pragma db id auto
 unsigned long long id_;

 #pragma db member(first) virtual(std::string) before
 #pragma db member(last) virtual(std::string) after(first)
};

The order of columns in the resulting table will be: first, last, id.

While in the above examples using virtual data members doesn’t seem to yield any benefits, this

mechanism can be useful in a number of situations. As one example, consider the need to aggre­

gate or dis-aggregate a data member:

#pragma db object
class person
{
 ...

 #pragma db transient
 std::pair<std::string, std::string> name_;

 #pragma db member(first) virtual(std::string) access(name_.first)
 #pragma db member(last) virtual(std::string) access(name_.second)
};

Revision 2.6, March 2025276 C++ Object Persistence with ODB

14.4.13 virtual

We can also use virtual data members to implement composite object ids that are spread over

multiple data members:

#pragma db value
struct name
{
 name () {}
 name (std::string const& f, std::string const& l)
 : first (f), last(l) {}

 std::string first;
 std::string last;
};

#pragma db object
class person
{
 ...

 #pragma db transient
 std::string first_;

 #pragma db transient
 std::string last_;

 #pragma db member(name) virtual(name) id \
 get(::name (this.first_, this.last_)) \
 set(this.first_ = (?).first; this.last_ = (?).last)
};

Another common situation that calls for virtual data members is a class that uses the pimpl idiom.

While the following code fragment outlines the idea, for details refer to the pimpl example in

the odb-examples package.

#pragma db object
class person
{
public:
 std::string const& name () const;
 void name (std::string const&);

 unsigned short age () const;
 void age (unsigned short);

 ...

private:
 class impl;

 #pragma db transient

277Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.13 virtual

 impl* pimpl_;

 #pragma db member(name) virtual(std::string) // Uses name().
 #pragma db member(age) virtual(unsigned short) // Uses age().
};

The above example also shows that names used for virtual data members (name and age in our

case) can be the same as the names of accessor/modifier functions. The only names that virtual

data members cannot clash with are those of other data members, virtual or real.

A common pattern in the above examples is the need to declare the real data member that actually

stores the data as transient. If all the real data members in a class are treated as transient, then we

can use the class-level transient specifier (Section 14.1.12, "transient (object)", Section

14.3.8, "transient (composite value)", Section 14.2.7, "transient (view)") instead of

doing it for each individual member. For example:

#pragma db object transient
class person
{
 ...

 std::string first_; // Transient.
 std::string last_; // Transient.

 #pragma db member(name) virtual(name) ...
};

The ability to treat all the real data members as transient becomes more important if we don’t

know the names of these data members. This is often the case when we are working with

third-party types that document the accessor and modifier functions but not the names of their

private data members. As an example, consider the point class defined in a third-party

<point> header file:

class point
{
public:
 point ();
 point (int x, int y);

 int x () const;
 int y () const;

 void x (int);
 void y (int);

private:
 ...
};

Revision 2.6, March 2025278 C++ Object Persistence with ODB

14.4.13 virtual

To convert this class to an ODB composite value type we could create the

point-mapping.hxx file with the following content:

#include <point>

#pragma db value(point) transient definition
#pragma db member(point::x) virtual(int)
#pragma db member(point::y) virtual(int)

Virtual data members can be of simple value, composite value, container, or object pointer types.

They can be used in persistent classes, composite value types, and views.

14.4.14 inverse

The inverse specifier specifies that the data member of an object pointer or a container of

object pointers type is an inverse side of a bidirectional object relationship. The single required

argument to this specifier is the corresponding data member name in the referenced object. For

example:

class person;

#pragma db object pointer(std::shared_ptr)
class employer
{
 ...

 std::vector<std::shared_ptr<person>> employees_;
};

#pragma db object pointer(std::shared_ptr)
class person
{
 ...

 #pragma db inverse(employee_)
 std::weak_ptr<employer> employer_;
};

An inverse member does not have a corresponding column or, in case of a container, table in the

resulting database schema. Instead, the column or table from the referenced object is used to

retrieve the relationship information. Only ordered and set containers can be used for inverse

members. If an inverse member is of an ordered container type, it is automatically marked as

unordered (Section 14.4.19, "unordered").

For a more detailed discussion of inverse members, refer to Section 6.2, "Bidirectional Relation­

ships".

279Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.14 inverse

14.4.15 on_delete

The on_delete specifier specifies the on-delete semantics for a data member of an object

pointer or a container of object pointers type. The single required argument to this specifier must

be either cascade or set_null.

The on_delete specifier is translated directly to the corresponding ON DELETE SQL clause.

That is, if cascade is specified, then when a pointed-to object is erased from the database, the

database state of the pointing object is automatically erased as well. If set_null is specified,

then when a pointed-to object is erased from the database, the database state of the pointing

object is automatically updated to set the pointer column to NULL. For example:

#pragma db object
class employer
{
 ...

 #pragma db id auto
 unsigned long long id_;
};

#pragma db object
class person
{
 ...

 #pragma db on_delete(cascade)
 employer* employer_;
};

unsigned long long id;

{
 employer e;
 person p;
 p.employer_ = &e;

 transaction t (db.begin ());

 id = db.persist (e);
 db.persist (p);

 t.commit ();
}

{
 transaction t (db.begin ());

 // Database state of the person object is erased as well.

Revision 2.6, March 2025280 C++ Object Persistence with ODB

14.4.15 on_delete

 //
 db.erase<employer> (id);

 t.commit ();
}

Note that this is a database-level functionality and care must be taken in order not to end up with

inconsistent object states in the application’s memory and database. The following example illus­

trates the kind of problems one may encounter:

#pragma db object
class employer
{
 ...
};

#pragma db object
class person
{
 ...

 #pragma db on_delete(set_null)
 employer* employer_;
};

employer e;
person p;
p.employer_ = &e;

{
 transaction t (db.begin ());
 db.persist (e);
 db.persist (p);
 t.commit ();
}

{
 transaction t (db.begin ());

 // The employer column is set to NULL in the database but
 // not the p.employer_ data member in the application.
 //
 db.erase (e);
 t.commit ();
}

{
 transaction t (db.begin ());

 // Override the employer column with an invalid pointer.
 //

281Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.15 on_delete

 db.update (p);

 t.commit ();
}

Note that even optimistic concurrency will not resolve such issues unless you are using

database-level support for optimistic concurrency as well (for example, ROWVERSION in SQL

Server).

The on_delete specifier is only valid for non-inverse object pointer data members. If the

set_null semantics is used, then the pointer must allow the NULL value.

14.4.16 version

The version specifier specifies that the data member stores the object version used to support

optimistic concurrency. If a class has a version data member, then it must also be declared as

having the optimistic concurrency model using the optimistic pragma (Section 14.1.5,

"optimistic"). For example:

#pragma db object optimistic
class person
{
 ...

 #pragma db version
 unsigned long long version_;
};

A version member must be of an integral C++ type and must map to an integer or similar

database type. Note also that object versions are not reused. If you have a high update frequency,

then care must be taken not to run out of versions. In such situations, using a 64-bit integer as the

version type is a safe choice.

For a more detailed discussion of optimistic concurrency, refer to Chapter 12, "Optimistic

Concurrency".

14.4.17 index

The index specifier instructs the ODB compiler to define a database index for the data member.

For example:

Revision 2.6, March 2025282 C++ Object Persistence with ODB

14.4.16 version

#pragma db object
class person
{
 ...

 #pragma db index
 std::string name_;
};

For more information on defining database indexes, refer to Section 14.7, "Index Definition

Pragmas".

14.4.18 unique

The index specifier instructs the ODB compiler to define a unique database index for the data

member. For example:

#pragma db object
class person
{
 ...

 #pragma db unique
 std::string name_;
};

For more information on defining database indexes, refer to Section 14.7, "Index Definition

Pragmas".

14.4.19 unordered

The unordered specifier specifies that the member of an ordered container type should be

stored unordered in the database. The database table for such a member will not contain the index

column and the order in which elements are retrieved from the database may not be the same as

the order in which they were stored. For example:

#pragma db object
class person
{
 ...

 #pragma db unordered
 std::vector<std::string> nicknames_;
};

283Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.18 unique

For a more detailed discussion of ordered containers and their storage in the database, refer to

Section 5.1, "Ordered Containers".

14.4.20 table

The table specifier specifies the table name that should be used to store the contents of the

container member. For example:

#pragma db object
class person
{
 ...

 #pragma db table("nicknames")
 std::vector<std::string> nicknames_;
};

If the table name is not specified, then the container table name is constructed by concatenating

the object’s table name, underscore, and the public member name. The public member name is

obtained by removing the common member name decorations, such as leading and trailing under­

scores, the m_ prefix, etc. In the example above, without the table specifier, the container’s

table name would have been person_nicknames.

The table specifier can also be used for members of composite value types. In this case it spec­

ifies the table name prefix for container members inside the composite value type. Refer to

Section 7.2.2, "Composite Value Column and Table Names" for details.

The container table name can be qualified with a database schema, for example:

#pragma db object
class person
{
 ...

 #pragma db table("extras.nicknames")
 std::vector<std::string> nicknames_;
};

For more information on database schemas and the format of the qualified names, refer to Section

14.1.8, "schema".

14.4.21 load/update

The load and update specifiers specify the loading and updating behavior for an object

section, respectively. Valid values for the load specifier are eager (default) and lazy. Valid

values for the update specifier are always (default), change, and manual. For more infor­

Revision 2.6, March 2025284 C++ Object Persistence with ODB

14.4.20 table

mation on object sections, refer to Chapter 9, "Sections".

14.4.22 section

The section specifier indicates that a data member of a persistent class belongs to an object

section. The single required argument to this specifier is the name of the section data member.

This specifier can only be used on direct data members of a persistent class. For more information

on object sections, refer to Chapter 9, "Sections".

14.4.23 added

The added specifier marks the data member as soft-added. The single required argument to this

specifier is the addition version. For more information on this functionality, refer to Section 13.4,

"Soft Object Model Changes".

14.4.24 deleted

The deleted specifier marks the data member as soft-deleted. The single required argument to

this specifier is the deletion version. For more information on this functionality, refer to Section

13.4, "Soft Object Model Changes".

14.4.25 index_type

The index_type specifier specifies the native database type that should be used for an ordered

container’s index column of the data member. The semantics of index_type are similar to

those of the type specifier (Section 14.4.3, "type"). The native database type is expected to be

an integer type. For example:

#pragma db object
class person
{
 ...

 #pragma db index_type("SMALLINT UNSIGNED")
 std::vector<std::string> nicknames_;
};

14.4.26 key_type

The key_type specifier specifies the native database type that should be used for a map

container’s key column of the data member. The semantics of key_type are similar to those of

the type specifier (Section 14.4.3, "type"). For example:

285Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.22 section

#pragma db object
class person
{
 ...

 #pragma db key_type("INT UNSIGNED")
 std::map<unsigned short, float> age_weight_map_;
};

14.4.27 value_type

The value_type specifier specifies the native database type that should be used for a

container’s value column of the data member. The semantics of value_type are similar to

those of the type specifier (Section 14.4.3, "type"). For example:

#pragma db object
class person
{
 ...

 #pragma db value_type("VARCHAR(255)")
 std::vector<std::string> nicknames_;
};

The value_null and value_not_null (Section 14.4.28,

"value_null/value_not_null") specifiers can be used to control the NULL semantics of a

value column.

14.4.28 value_null/value_not_null

The value_null and value_not_null specifiers specify that a container’s element value

for the data member can or cannot be NULL, respectively. The semantics of value_null and

value_not_null are similar to those of the null and not_null specifiers (Section 14.4.6,

"null/not_null"). For example:

#pragma db object
class person
{
 ...
};

#pragma db object
class account
{
 ...

Revision 2.6, March 2025286 C++ Object Persistence with ODB

14.4.27 value_type

 #pragma db value_not_null
 std::vector<std::shared_ptr<person>> holders_;
};

For set and multiset containers (Section 5.2, "Set and Multiset Containers") the element value is

automatically treated as not allowing a NULL value.

14.4.29 id_options

The id_options specifier specifies additional column definition options that should be used

for a container’s id column of the data member. For example:

#pragma db object
class person
{
 ...

 #pragma db id options("COLLATE binary")
 std::string name_;

 #pragma db id_options("COLLATE binary")
 std::vector<std::string> nicknames_;
};

The semantics of id_options are similar to those of the options specifier (Section 14.4.8,

"options").

14.4.30 index_options

The index_options specifier specifies additional column definition options that should be

used for a container’s index column of the data member. For example:

#pragma db object
class person
{
 ...

 #pragma db index_options("ZEROFILL")
 std::vector<std::string> nicknames_;
};

The semantics of index_options are similar to those of the options specifier (Section

14.4.8, "options").

287Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.29 id_options

14.4.31 key_options

The key_options specifier specifies additional column definition options that should be used

for a container’s key column of the data member. For example:

#pragma db object
class person
{
 ...

 #pragma db key_options("COLLATE binary")
 std::map<std::string, std::string> properties_;
};

The semantics of key_options are similar to those of the options specifier (Section 14.4.8,

"options").

14.4.32 value_options

The value_options specifier specifies additional column definition options that should be

used for a container’s value column of the data member. For example:

#pragma db object
class person
{
 ...

 #pragma db value_options("COLLATE binary")
 std::set<std::string> nicknames_;
};

The semantics of value_options are similar to those of the options specifier (Section

14.4.8, "options").

14.4.33 id_column

The id_column specifier specifies the column name that should be used to store the object id in

a container’s table for the data member. The semantics of id_column are similar to those of the

column specifier (Section 14.4.9, "column"). For example:

#pragma db object
class person
{
 ...

 #pragma db id_column("person_id")
 std::vector<std::string> nicknames_;
};

Revision 2.6, March 2025288 C++ Object Persistence with ODB

14.4.31 key_options

If the column name is not specified, then object_id is used by default.

14.4.34 index_column

The index_column specifier specifies the column name that should be used to store the

element index in an ordered container’s table for the data member. The semantics of

index_column are similar to those of the column specifier (Section 14.4.9, "column"). For

example:

#pragma db object
class person
{
 ...

 #pragma db index_column("nickname_number")
 std::vector<std::string> nicknames_;
};

If the column name is not specified, then index is used by default.

14.4.35 key_column

The key_column specifier specifies the column name that should be used to store the key in a

map container’s table for the data member. The semantics of key_column are similar to those

of the column specifier (Section 14.4.9, "column"). For example:

#pragma db object
class person
{
 ...

 #pragma db key_column("age")
 std::map<unsigned short, float> age_weight_map_;
};

If the column name is not specified, then key is used by default.

14.4.36 value_column

The value_column specifier specifies the column name that should be used to store the

element value in a container’s table for the data member. The semantics of value_column are

similar to those of the column specifier (Section 14.4.9, "column"). For example:

289Revision 2.6, March 2025 C++ Object Persistence with ODB

14.4.34 index_column

#pragma db object
class person
{
 ...

 #pragma db value_column("weight")
 std::map<unsigned short, float> age_weight_map_;
};

If the column name is not specified, then value is used by default.

14.4.37 points_to

The points_to specifier allows the establishment of object relationships without using object

pointers. For example:

#pragma db object
class employer
{
 ...

 #pragma db id
 std::string id_;
};

#pragma db object
class person
{
 ...

 #pragma db points_to(employer)
 std::string employer_;
};

14.5 Namespace Pragmas

A pragma with the namespace qualifier describes a C++ namespace. Similar to other qualifiers,

namespace can also refer to a named C++ namespace, for example:

namespace test
{
 ...
}

#pragma db namespace(test) ...

Revision 2.6, March 2025290 C++ Object Persistence with ODB

14.5 Namespace Pragmas

To refer to the global namespace in the namespace qualifier the following special syntax is

used:

#pragma db namespace()

The namespace qualifier can be optionally followed, in any order, by one or more specifiers

summarized in the table below:

Specifier Summary Section

pointer pointer type for persistent classes and views inside a namespace 14.5.1

table table name prefix for persistent classes inside a namespace 14.5.2

schema database schema for persistent classes inside a namespace 14.5.3

session enable/disable session support for persistent classes inside a namespace 14.5.4

14.5.1 pointer

The pointer specifier specifies the default pointer type for persistent classes and views inside

the namespace. For example:

#pragma db namespace pointer(std::shared_ptr)
namespace accounting
{
 #pragma db object
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

There are only two valid ways to specify a pointer with the pointer specifier at the namespace

level. We can specify the template name of a smart pointer in which case the ODB compiler will

automatically append the class name as a template argument. Or we can use * to denote a raw

pointer.

Note also that we can always override the default pointer specified at the namespace level for any

persistent class or view inside this namespace. For example:

291Revision 2.6, March 2025 C++ Object Persistence with ODB

14.5.1 pointer

#pragma db namespace pointer(std::unique_ptr)
namespace accounting
{
 #pragma db object pointer(std::shared_ptr)
 class employee
 {
 ...
 };

 #pragma db object
 class employer
 {
 ...
 };
}

For a more detailed discussion of object and view pointers, refer to Section 3.3, "Object and View

Pointers".

14.5.2 table

The table specifier specifies a table prefix that should be added to table names of persistent

classes inside the namespace. For example:

#pragma db namespace table("acc_")
namespace accounting
{
 #pragma db object table("employees")
 class employee
 {
 ...
 };

 #pragma db object table("employers")
 class employer
 {
 ...
 };
}

In the above example the resulting table names will be acc_employees and acc_employ­
ers.

The table name prefix can also be specified with the --table-prefix ODB compiler option.

Note that table prefixes specified at the namespace level as well as with the command line option

are accumulated. For example:

Revision 2.6, March 2025292 C++ Object Persistence with ODB

14.5.2 table

#pragma db namespace() table("audit_")

#pragma db namespace table("hr_")
namespace hr
{
 #pragma db object table("employees")
 class employee
 {
 ...
 };
}

#pragma db object table("employers")
class employer
{
 ...
};

If we compile the above example with the --table-prefix test_ option, then the

employee class table will be called test_audit_hr_employees and employer —

test_audit_employers.

Table prefixes can be used as an alternative to database schemas (Section 14.1.8, "schema") if

the target database system does not support schemas.

14.5.3 schema

The schema specifier specifies a database schema that should be used for persistent classes

inside the namespace. For more information on specifying a database schema refer to Section

14.1.8, "schema".

14.5.4 session

The session specifier specifies whether to enable session support for persistent classes inside

the namespace. For example:

#pragma db namespace session
namespace hr
{
 #pragma db object // Enabled.
 class employee
 {
 ...
 };

 #pragma db object session(false) // Disabled.
 class employer

293Revision 2.6, March 2025 C++ Object Persistence with ODB

14.5.3 schema

 {
 ...
 };
}

Session support is disabled by default unless the --generate-session ODB compiler

option is specified. Session support specified at the namespace level can be overridden on the per

object basis (Section 14.1.10, "session"). For more information on sessions, refer to Chapter

11, "Session".

14.6 Object Model Pragmas

A pragma with the model qualifier describes the whole C++ object model. For example:

#pragma db model ...

The model qualifier can be followed, in any order, by one or more specifiers summarized in the

table below:

Specifier Summary Section

version object model version 14.6.1

14.6.1 version

The version specifier specifies the object model version when schema evolution support is

used. The first two required arguments to this specifier are the base and current model versions,

respectively. The third optional argument specifies whether the current version is open for

changes. Valid values for this argument are open (the default) and closed. For more informa­

tion on this functionality, refer to Chapter 13, "Database Schema Evolution".

14.7 Index Definition Pragmas

While it is possible to manually add indexes to the generated database schema, it is more conve­

nient to do this as part of the persistent class definitions. A pragma with the index qualifier

describes a database index. It has the following general format:

#pragma db index[("<name>")] \
 [unique|type("<type>")] \
 [method("<method>")] \
 [options("<index-options>")] \
 member(<name>[, "<column-options>"])... \
 members(<name>[,<name>...])...

Revision 2.6, March 2025294 C++ Object Persistence with ODB

14.6 Object Model Pragmas

The index qualifier can optionally specify the index name. If the index name is not specified,

then one is automatically derived by appending the _i suffix to the column name of the index

member. If the name is not specified and the index contains multiple members, then the index

definition is invalid.

The optional type, method, and options clauses specify the index type, for example

UNIQUE, index method, for example BTREE, and index options, respectively. The unique
clause is a shortcut for type("UNIQUE"). Note that not all database systems support specify­

ing an index method or options. For more information on the database system-specific index

types, methods, and options, refer to Part II, "Database Systems".

To specify index members we can use the member or members clauses, or a mix of the two.

The member clause allows us to specify a single index member with optional column options,

for example, "ASC". If we need to create a composite index that contains multiple members,

then we can repeat the member clause several times or, if the members don’t have any column

options, we can use a single members clause instead. Similar to the index type, method, and

options, the format of column options is database system-specific. For more details, refer to Part

II, "Database Systems".

The following code fragment shows some typical examples of index definitions:

#pragma db object
class object
{
 ...

 int x;
 int y;
 int z1;
 int z2;

 // An index for member x with automatically-assigned name x_i.
 //
 #pragma db index member(x)

 // A unique index named y_index for member y which is sorted in
 // the descending order. The index is using the BTREE method.
 //
 #pragma db index("y_index") unique method("BTREE") member(y, "DESC")

 // A composite BITMAP index named z_i for members z1 and z2.
 //
 #pragma db index("z_i") type("BITMAP") members(z1, z2)
};

295Revision 2.6, March 2025 C++ Object Persistence with ODB

14.7 Index Definition Pragmas

ODB also offers a shortcut for defining an index with the default method and options for a single

data member. Such an index can be defined using the index (Section 14.4.17, "index") or

unique (Section 14.4.18, "unique") member specifier. For example:

#pragma db object
class object
{
 ...

 #pragma db index
 int x;

 #pragma db type("INT") unique
 int y;
};

The above example is semantically equivalent to the following more verbose version:

#pragma db object
class object
{
 ...

 int x;

 #pragma db type("INT")
 int y;

 #pragma db index member(x)
 #pragma db index unique member(y)
};

While it is convenient to define an index inside a persistent class, it is also possible to do that out

of the class body. In this case, the index name, if specified, must be prefixed with the poten­

tially-qualified class name. For example:

namespace n
{
 #pragma db object
 class object
 {
 ...

 int x;
 int y;
 };

 // An index for member x in persistent class object with automatically-
 // assigned name x_i.
 //

Revision 2.6, March 2025296 C++ Object Persistence with ODB

14.7 Index Definition Pragmas

 #pragma db index(object) member(x)
}

// An index named y_index for member y in persistent class n::object.
//
#pragma db index(n::object::"y_index") member(y)

It is possible to define an index on a member that is of a composite value type or on some of its

nested members. For example:

#pragma db value
struct point
{
 int x;
 int y;
 int z;
};

#pragma db object
class object
{
 // An index that includes all of the p1’s nested members.
 //
 #pragma db index
 point p1;

 point p2;

 // An index that includes only p2.x and p2.y.
 //
 #pragma db index("p2_xy_i") members(p2.x, p2.y)
};

When generating a schema for a container member (Chapter 5, "Containers"), ODB automatically

defines two indexes on the container table. One is for the object id that references the object table

and the other is for the index column in case the container is ordered (Section 5.1, "Ordered

Containers"). By default these indexes use the default index name, type, method, and options.

The index pragma allows us to customize these two indexes by recognizing the special id and

index nested member names when specified after a container member. For example:

#pragma db object
class object
{
 std::vector<int> v;

 // Change the container id index name.
 //
 #pragma db index("id_index") member(v.id)

297Revision 2.6, March 2025 C++ Object Persistence with ODB

14.7 Index Definition Pragmas

 // Change the container index index method.
 //
 #pragma db index method("BTREE") member(v.index)
};

14.8 Database Type Mapping Pragmas

A pragma with the map qualifier describes a mapping between either two C++ types (Section

14.8.1, "C++ Type Mapping Pragmas") or two database types (Section 14.8.2, "Database Type

Mapping Pragmas").

14.8.1 C++ Type Mapping Pragmas

A pragma with the map qualifier can describe a mapping between two C++ types. For each

database system ODB provides built-in support for mapping a standard set of C++ types, such as

integers, strings, binary, etc. However, many codebases may use custom versions of correspond­

ing (or similar) C++ types. While it is possible to add support for such custom types by providing

a suitable specialization of the value_traits class template, it is often simpler to define their

mapping in terms of one of the already supported types by specifying the conversion between the

two types. This mechanism can also be used to redefine the mapping for one of the standard

types. For example, we could map bool to std::string in order to save boolean values as

string literals. This mechanism can also be used with composite value types.

The map pragma for C++ types has the following format:

#pragma db map type(<name>) \
 as(<name>) \
 [to(<expr>)] \
 [from(<expr>)]

The type clause specifies the name of the C++ type that we are mapping. We will refer to it as

the mapped type from now on.

The as clause specifies the name of the C++ type that we are mapping the mapped type to. We

will refer to it as the interface type from now on.

The optional to and from clauses specify the C++ conversion expressions between the mapped

type and the interface type. The to expression converts from the interface type to the mapped

type and from converts in the other direction. If no explicit conversion is required for either

direction, then the corresponding clause can be omitted. If the conversion expressions are speci­

fied, then they must contain the special (?) placeholder which will be replaced with the actual

value to be converted.

Revision 2.6, March 2025298 C++ Object Persistence with ODB

14.8 Database Type Mapping Pragmas

As an example, suppose we have the path type which represents a filesystem path and which we

wish to store in the database. Suppose also that it has a constructor that allows implicit conversion

of std::string to path as well as the string() member function which returns the

std::string representation of path. This is how we can map path to std::string to be

able to store it in the database:

#pragma db map type(path) \
 as(std::string) \
 from((?).string ())

Notice that we could omit the to expression because std::string can be implicitly

converted to path. In this case the implied expression is equivalent to to((?)).

As a more elaborate example, the following map pragma maps the standard chrono

time_point type (that is, a timestamp) as uint64 with the stored values representing the

number of nanoseconds since the UNIX epoch:

#pragma db map \
 type(std::chrono::system_clock::time_point) \
 as(std::uint64_t) \
 to(std::chrono::duration_cast<std::chrono::nanoseconds> (\
 (?).time_since_epoch ()).count ()) \
 from(std::chrono::system_clock::time_point (\
 std::chrono::duration_cast<std::chrono::system_clock::duration> (\
 std::chrono::nanoseconds (?))))

And the following example shows how to redefine the mapping for one of the standard types:

#pragma db map type(bool) \
 as(std::string) \
 to((?) ? "true" : "false") \
 from((?) == "true")

14.8.2 Database Type Mapping Pragmas

A pragma with the map qualifier can describe a mapping between two database types. For each

database system ODB provides built-in support for a core set of database types, such as integers,

strings, binary, etc. However, many database systems provide extended types such as geospatial

types, user-defined types, and collections (arrays, table types, key-value stores, etc). In order to

support such extended types, ODB allows us to map them to one of the built-in types, normally a

string or a binary. Given the text or binary representation of the data we can then extract it into

our chosen C++ data type and thus establish a mapping between an extended database type and

its C++ equivalent.

299Revision 2.6, March 2025 C++ Object Persistence with ODB

14.8.2 Database Type Mapping Pragmas

The map pragma for database types has the following format:

#pragma db map type("<regex>") \
 as("<subst>") \
 [to("<subst>")] \
 [from("<subst>")]

The type clause specifies the name of the database type that we are mapping. We will refer to it

as the mapped type from now on. The name of the mapped type is a Perl-like regular expression

pattern that is matched in the case-insensitive mode.

The as clause specifies the name of the database type that we are mapping the mapped type to.

We will refer to it as the interface type from now on. The name of the interface type is a regular

expression substitution and should expand to a name of a database type for which ODB provides

built-in support.

The optional to and from clauses specify the database conversion expressions between the

mapped type and the interface type. The to expression converts from the interface type to the

mapped type and from converts in the other direction. If no explicit conversion is required for

either direction, then the corresponding clause can be omitted. The conversion expressions are

regular expression substitutions. They must contain the special (?) placeholder which will be

replaced with the actual value to be converted. Turning on SQL statement tracing (Section 3.13,

"Tracing SQL Statement Execution") can be useful for debugging conversion expressions. This

allows you to see the substituted expressions as used in the actual statements.

As an example, the following map pragma maps the PostgreSQL array of INTEGER’s to TEXT:

#pragma db map type("INTEGER *\\[(\\d*)\\]") \
 as("TEXT") \
 to("(?)::INTEGER[$1]") \
 from("(?)::TEXT")

With the above mapping we can now have a persistent class that has a member of the PostgreSQL

array type:

#pragma db object
class object
{
 ...

 #pragma db type("INTEGER[]")
 std::string array_;
};

Revision 2.6, March 2025300 C++ Object Persistence with ODB

14.8.2 Database Type Mapping Pragmas

In PostgreSQL the array literal has the {n1,n2,...} form. As a result, we need to make sure

that we pass the correct text representation in the array_ member, for example:

object o;
o.array_ = "{1,2,3}";
db.persist (o);

Of course, std::string is not the most natural representation of an array of integers in C++.

Instead, std::vector<int> would have been much more appropriate. To add support for

mapping std::vector<int> to PostgreSQL INTEGER[] we need to provide a

value_traits specialization that implements conversion between the PostgreSQL text repre­

sentation of an array and std::vector<int>. Below is a sample implementation:

namespace odb
{
 namespace pgsql
 {
 template <>
 class value_traits<std::vector<int>, id_string>
 {
 public:
 using value_type = std::vector<int>;
 using query_type = value_type;
 using image_type = details::buffer;

 static void
 set_value (value_type& v,
 const details::buffer& b,
 std::size_t n,
 bool is_null)
 {
 v.clear ();

 if (!is_null)
 {
 char c;
 std::istringstream is (std::string (b.data (), n));

 is >> c; // ’{’

 for (c = static_cast<char> (is.peek ()); c != ’}’; is >> c)
 {
 v.push_back (int ());
 is >> v.back ();
 }
 }
 }

 static void
 set_image (details::buffer& b,

301Revision 2.6, March 2025 C++ Object Persistence with ODB

14.8.2 Database Type Mapping Pragmas

 std::size_t& n,
 bool& is_null,
 const value_type& v)
 {
 is_null = false;
 std::ostringstream os;

 os << ’{’;

 for (value_type::const_iterator i (v.begin ()), e (v.end ());
 i != e;)
 {
 os << *i;

 if (++i != e)
 os << ’,’;
 }

 os << ’}’;

 const std::string& s (os.str ());
 n = s.size ();

 if (n > b.capacity ())
 b.capacity (n);

 std::memcpy (b.data (), s.c_str (), n);
 }
 };
 }
}

Once this specialization is included in the generated code (see the mapping example in the

odb-examples package for details), we can use std::vector<int> instead of

std::string in our persistent class:

#pragma db object
class object
{
 ...

 #pragma db type("INTEGER[]")
 std::vector<int> array_;
};

If we wanted to always map std::vector<int> to PostgreSQL INTEGER[], then we could

instead write:

Revision 2.6, March 2025302 C++ Object Persistence with ODB

14.8.2 Database Type Mapping Pragmas

using int_vector = std::vector<int>;
#pragma db value(int_vector) type("INTEGER[]")

#pragma db object
class object
{
 ...

 std::vector<int> array_; // Mapped to INTEGER[].
};

While the above example only shows how to handle PostgreSQL arrays, other types in Post­

greSQL and in other databases can be supported in a similar way. The odb-tests package

contains a set of tests in the <database>/custom directories that, for each database, shows

how to provide custom mapping for some of the extended types.

14.9 C++ Compiler Warnings

When a C++ header file defining persistent classes and containing ODB pragmas is used to build

the application, the C++ compiler may issue warnings about pragmas that it doesn’t recognize.

There are several ways to deal with this problem. The easiest is to disable such warnings using

one of the compiler-specific command line options or warning control pragmas. This method is

described in the following sub-section for popular C++ compilers.

There are also several C++ compiler-independent methods that we can employ. The first is to use

the PRAGMA_DB macro, defined in <odb/core.hxx>, instead of using #pragma db
directly. This macro expands to the ODB pragma when compiled with the ODB compiler and to

an empty declaration when compiled with other compilers. The following example shows how

we can use this macro:

#include <odb/core.hxx>

PRAGMA_DB(object)
class person
{
 ...

 PRAGMA_DB(id)
 unsigned long long id_;
};

An alternative to using the PRAGMA_DB macro is to group the #pragma db directives in

blocks that are conditionally included into compilation only when compiled with the ODB

compiler. For example:

303Revision 2.6, March 2025 C++ Object Persistence with ODB

14.9 C++ Compiler Warnings

class person
{
 ...

 unsigned long long id_;
};

#ifdef ODB_COMPILER
pragma db object(person)
pragma db member(person::id_) id
#endif

The disadvantage of this approach is that it can quickly become overly verbose when positioned

pragmas are used.

14.9.1 GNU C++

GNU g++ does not issue warnings about unknown pragmas unless requested with the -Wall
command line option. To disable only the unknown pragma warning, we can add the

-Wno-unknown-pragmas option after -Wall, for example:

g++ -Wall -Wno-unknown-pragmas ...

14.9.2 Visual C++

Microsoft Visual C++ issues an unknown pragma warning (C4068) at warning level 1 or higher.

This means that unless we have disabled the warnings altogether (level 0), we will see this

warning.

To disable this warning via the compiler command line, we can add the /wd4068 C++ compiler

option in Visual Studio 2008 and earlier. In Visual Studio 2010 and later there is now a special

GUI field where we can enter warning numbers that should be disabled. Simply enter 4068 into

this field.

We can also disable this warning for only a specific header or a fragment of a header using the

warning control pragma. For example:

#include <odb/core.hxx>

#pragma warning (push)
#pragma warning (disable:4068)

#pragma db object
class person
{
 ...

Revision 2.6, March 2025304 C++ Object Persistence with ODB

14.9.1 GNU C++

 #pragma db id
 unsigned long long id_;
};

#pragma warning (pop)

14.9.3 Sun C++

The Sun C++ compiler does not issue warnings about unknown pragmas unless the +w or +w2
option is specified. To disable only the unknown pragma warning we can add the

-erroff=unknownpragma option anywhere on the command line, for example:

CC +w -erroff=unknownpragma ...

14.9.4 IBM XL C++

IBM XL C++ issues an unknown pragma warning (1540-1401) by default. To disable this

warning we can add the -qsuppress=1540-1401 command line option, for example:

xlC -qsuppress=1540-1401 ...

14.9.5 HP aC++

HP aC++ (aCC) issues an unknown pragma warning (2161) by default. To disable this warning

we can add the +W2161 command line option, for example:

aCC +W2161 ...

14.9.6 Clang

Clang does not issue warnings about unknown pragmas unless requested with the -Wall
command line option. To disable only the unknown pragma warning, we can add the

-Wno-unknown-pragmas option after -Wall, for example:

clang++ -Wall -Wno-unknown-pragmas ...

We can also disable this warning for only a specific header or a fragment of a header using the

warning control pragma. For example:

#include <odb/core.hxx>

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"

#pragma db object
class person
{

305Revision 2.6, March 2025 C++ Object Persistence with ODB

14.9.3 Sun C++

 ...

 #pragma db id
 unsigned long long id_;
};

#pragma clang diagnostic pop

Revision 2.6, March 2025306 C++ Object Persistence with ODB

14.9.6 Clang

15 Advanced Techniques and Mechanisms

This chapter covers more advanced techniques and mechanisms provided by ODB that may be

useful in certain situations.

15.1 Transaction Callbacks

The ODB transaction class (odb::transaction) allows an application to register a callback

that will be called after the transaction is finalized, that is, committed or rolled back. This mecha­

nism can be used, for example, to restore values that were updated during the transaction execu­

tion to their original states if the transaction is rolled back.

The callback management interface of the transaction class is shown below.

namespace odb
{
 class transaction
 {
 ...

 public:
 static const unsigned short event_commit = 0x01;
 static const unsigned short event_rollback = 0x02;
 static const unsigned short event_all = event_commit | event_rollback;

 using callback_type = void (*) (
 unsigned short event, void* key, unsigned long long data);

 void
 callback_register (callback_type callback,
 void* key,
 unsigned short event = event_all,
 unsigned long long data = 0,
 transaction** state = 0);

 void
 callback_unregister (void* key);

 void
 callback_update (void* key,
 unsigned short event,
 unsigned long long data = 0,
 transaction** state = 0);
 }
}

307Revision 2.6, March 2025 C++ Object Persistence with ODB

15 Advanced Techniques and Mechanisms

The callback_register() function registers a post-commit/rollback callback. The call­
back argument is the function that should be called. The key argument is used by the transac­

tion to identify this callback. It is also normally used to pass an address of the data object on

which the callback function will work. The event argument is the bitwise-or of the events that

should trigger the callback.

The optional data argument can be used to store any POD user data that doesn’t exceed 8 bytes in

size and doesn’t require alignment greater than unsigned long long. For example, we

could store an old value of a flag or a counter that needs to be restored in case of a roll back.

The optional state argument can be used to indicate that the callback has been unregistered

because the transaction was finalized. In this case the transaction automatically resets the passed

pointer to 0. This is primarily useful if we are interested in only one of the events (commit or roll­

back).

The callback_unregister() function unregisters a previously registered callback. If the

number of registered callbacks is large, then this can be a slow operation. Generally, the callback

mechanism is optimized for cases where the callbacks stay registered until the transaction is final­

ized.

Note also that you don’t need to unregister a callback that has been called or auto-reset using the

state argument passed to callback_register(). This function does nothing if the key is

not found.

The callback_update() function can be used to update the event, data, and state
values of a previously registered callback. Similar to callback_unregister(), this is a

potentially slow operation.

When the callback is called, it is passed the event that triggered it, as well as the key and data
values that were passed to the callback_register() function. Note also that the order in

which the callbacks are called is unspecified. The rollback event can be triggered by an excep­

tion. In this case, if the callback throws, the program will be terminated.

The following example shows how we can use transaction callbacks together with database oper­

ation callbacks (Section 14.1.7, "callback") to manage the object’s "dirty" flag.

#include <odb/callback.hxx>
#include <odb/transaction.hxx>

#pragma db object callback(update)
class object
{
 ...

 #pragma db transient
 mutable bool dirty_;

Revision 2.6, March 2025308 C++ Object Persistence with ODB

15.1 Transaction Callbacks

 // Non-NULL value indicates that we are registered
 // with this transaction.
 //
 #pragma db transient
 mutable odb::transaction* tran_;

 void
 update (odb::callback_event e, odb::database&) const
 {
 using namespace odb::core;

 if (e == callback_event::post_update)
 return;

 // Mark the object as clean again but register a
 // transaction callback in case the update is rolled
 // back.
 //
 tran_ = &transaction::current ();
 tran_->callback_register (&rollback,
 const_cast<object*> (this),
 transaction::event_rollback,
 0,
 &tran_);
 dirty_ = false;
 }

 static void
 rollback (unsigned short, void* key, unsigned long long)
 {
 // Restore the dirty flag since the changes have been
 // rolled back.
 //
 object& o (*static_cast<object*> (key));
 o.dirty_ = true;
 }

 ~object ()
 {
 // Unregister the callback if we are going away before
 // the transaction.
 //
 if (tran_ != 0)
 tran_->callback_unregister (this);
 }
};

309Revision 2.6, March 2025 C++ Object Persistence with ODB

15.1 Transaction Callbacks

15.2 Persistent Class Template Instantiations

Similar to composite value types (Section 7.2, "Composite Value Types"), a persistent object can

be defined as an instantiation of a C++ class template, for example:

template <typename T>
class person
{
 ...

 T first_;
 T last_;
};

using std_person = person<std::string>;

#pragma db object(std_person)
#pragma db member(std_person::last_) id

Note that the database support code for such a persistent object is generated when compiling the

header containing the db object pragma and not the header containing the template definition

or the using alias. This allows us to use templates defined in other files, for example:

#include <utility> // std::pair

using person = std::pair<unsigned int, std::string>;
#pragma db object(person)
#pragma db member(person::first) id auto column("id")
#pragma db member(person::second) column("name")

You may also have to explicitly specify the object type in calls to certain database class func­

tions due to the inability do distinguish, at the API level, between smart pointers and persistent

objects defined as class template instantiations. For example:

person p;

db.update (p); // Error.
db.reload (p); // Error.
db.erase (p); // Error.

db.update<person> (p); // Ok.
db.reload<person> (p); // Ok.
db.erase<person> (p); // Ok.

It also makes sense to factor persistent data members that do not depend on template arguments

into a common, non-template base class. The following more realistic example illustrates this

approach:

Revision 2.6, March 2025310 C++ Object Persistence with ODB

15.2 Persistent Class Template Instantiations

#pragma db object abstract
class base_common
{
 ...

 #pragma db id auto
 unsigned long long id;
};

template <typename T>
class base: public base_common
{
 ...

 T value;
};

using string_base = base<std::string>;
#pragma db object(string_base) abstract

#pragma db object
class derived: public string_base
{
 ...
};

15.3 Bulk Database Operations

Some database systems supported by ODB provide a mechanism, often called bulk or batch state­

ment execution, that allows us to execute the same SQL statement on multiple sets of data at once

and with a single database API call (or equivalent). This often results in significantly better

performance if we need to execute the same statement for a large number of data sets (thousands

to millions).

ODB translates this mechanism to bulk operations which allow us to persist, update, or erase a

range of objects in the database. Currently, from all the database systems supported by ODB,

only Oracle, Microsoft SQL Server, and PostgreSQL are capable of bulk operations (but see

Section 19.5.7, "Bulk Operations Support" for PostgreSQL limitations). There is also currently no

emulation of the bulk API for other databases nor dynamic multi-database support. As a result, if

you are using dynamic multi-database support, you will need to "drop down" to static support in

order to access the bulk API. Refer to Chapter 16, "Multi-Database Support" for details.

As we will discuss later in this section, bulk operations have complex failure semantics that is

dictated by the underlying database API. As a result, support for bulk persist, update, and erase is

limited to persistent classes for which these operations can be performed with a single database

statement execution. In particular, bulk operations are not available for polymorphic objects

(Section 8.2, "Polymorphism Inheritance") or objects that have containers (inverse containers of

311Revision 2.6, March 2025 C++ Object Persistence with ODB

15.3 Bulk Database Operations

object pointers are an exception). Furthermore, for objects that have sections (Chapter 9,

"Sections") the bulk update operation will only be available if all the sections are manu­

ally-updated. On the other hand, bulk operations are supported for objects that use optimistic

concurrency (Chapter 12, "Optimistic Concurrency") or have no object id (Section 14.1.6,

"no_id").

To enable the generation of bulk operation support for a persistent class we use the bulk
pragma. For example:

#pragma db object bulk(5000)
class person
{
 ...

 #pragma db id auto
 unsigned long long id;
};

The single argument to the bulk pragma is the batch size. The batch size specifies the maximum

number of data sets that should be handled with a single underlying statement execution (or

equivalent). If the range that we want to perform the bulk operation on contains more objects than

the batch size, then ODB will split this operation into multiple underlying statement executions

(batches). To illustrate this point with an example, suppose we want to persist 53,000 objects and

the batch size is 5,000. ODB will then execute the statement 11 times, the first 10 times with

5,000 data sets each, and the last time with the remaining 3,000 data sets.

The commonly used batch sizes are in the 2,000-5,000 range, though smaller or larger batches

could provide better performance, depending on the situation. As a result, it is recommended to

experiment with different batch sizes to determine the optimum number for a particular object

and its use-cases. Note also that you may achieve better performance by also splitting a large bulk

operation into multiple transactions (Section 3.5, "Transactions").

For database systems that do not support bulk operations the bulk pragma is ignored. It is also

possible to specify different batch sizes for different database systems by using the database

prefix, for example:

#pragma db object mssql:bulk(3000) oracle:bulk(4000) pgsql:bulk(2000)
class person
{
 ...
};

Note that while specifying the batch size at compile time might seem inflexible, this approach

allows ODB to place internal arrays of the fixed batch size on the stack rather than allocating

them in the dynamic memory. However, specifying the batch size at runtime may be supported in

the future.

Revision 2.6, March 2025312 C++ Object Persistence with ODB

15.3 Bulk Database Operations

Once the bulk support is enabled for a particular object, we can use the following database

functions to perform bulk operations:

template <typename I>
void
persist (I begin, I end, bool continue_failed = true);

template <typename I>
void
update (I begin, I end, bool continue_failed = true);

template <typename I>
void
erase (I obj_begin, I obj_end, bool continue_failed = true);

template <typename T, typename I>
void
erase (I id_begin, I id_end, bool continue_failed = true);

Every bulk API function expects a range of elements, passed in the canonical C++ form as a pair

of input iterators. In case of persist(), update(), and the first erase() overload, we pass

a range of objects, either as references or as pointers, raw or smart. The following example illus­

trates the most common scenarios using the persist() call:

// C array of objects.
//
person a[2] {{"John", "Doe"}, {"Jane", "Doe"}};

db.persist (a, a + sizeof(a) / sizeof(a[0]));

// Vector of objects.
//
std::vector<person> v {{"John", "Doe"}, {"Jane", "Doe"}};

db.persist (v.begin (), v.end ());

// C array of raw pointers to objects.
//
person p1 ("John", "Doe");
person p2 ("Jane", "Doe");
person* pa[2] {&p1, &p2};

db.persist (pa, pa + sizeof(pa) / sizeof(pa[0]));

// Vector of raw pointers to objects.
//
std::vector<person*> pv {&p1, &p2};

313Revision 2.6, March 2025 C++ Object Persistence with ODB

15.3 Bulk Database Operations

db.persist (pv.begin (), pv.end ());

// Vector of smart (shared) pointers to objects.
//
std::vector<std::shared_ptr<person>> sv {
 std::make_shared<person> ("John", "Doe"),
 std::make_shared<person> ("Jane", "Doe")};

db.persist (sv.begin (), sv.end ());

The ability to perform a bulk operation on a range of raw pointers to objects can be especially

useful when the application stores objects in a way that does not easily conform to the pair of iter­

ators interface. In such cases we can create a temporary container of shallow pointers to objects

and use that to perform the bulk operation, for example:

struct person_entry
{
 person obj;

 // Some additional data.
 ...
};

using people = std::vector<person_entry>;

void
persist (odb::database& db, people& p)
{
 std::vector<person*> tmp;
 tmp.reserve (p.size ());
 std::for_each (p.begin (),
 p.end (),
 [&tmp] (person_entry& pe)
 {
 tmp.push_back (&pe.obj);
 });

 db.persist (tmp.begin (), tmp.end ());
}

The second overload of the bulk erase() function allows us to pass a range of object ids rather

than objects themselves. As with the corresponding non-bulk version, we have to specify the

object type explicitly, for example:

Revision 2.6, March 2025314 C++ Object Persistence with ODB

15.3 Bulk Database Operations

std::vector<unsigned long long> ids {1, 2};

db.erase<person> (ids.begin (), ids.end ());

Conceptually, a bulk operation is equivalent to performing the corresponding non-bulk version in

a loop, except when it comes to the failure semantics. Some databases that currently are capable

of bulk operations (specifically, Oracle and SQL Server) do not stop when a data set in a batch

fails (for example, because of a unique constraint violation). Instead, they continue executing

subsequent data sets until every element in the batch has been attempted. The

continue_failed argument in the bulk functions listed above specifies whether ODB should

extend this behavior and continue with subsequent batches if the one it has tried to execute has

failed elements. The default behavior is to continue.

The consequence of this failure semantics is that we may have multiple elements in the range

failed for different reasons. For example, if we tried to persist a number of objects, some of them

might have failed because they are already persistent while others — because of a unique

constraint violation. As a result, ODB uses the special odb::multiple_exceptions class

to report failures in the bulk API functions. This exception is thrown if one or more elements in

the range have failed and it contains the error information in the form of other ODB exception for

each failed position. The multiple_exceptions class has the following interface:

struct multiple_exceptions: odb::exception
{
 // Element type.
 //
 struct value_type
 {
 std::size_t
 position () const;

 const odb::exception&
 exception () const;

 bool
 maybe () const;
 };

 // Iteration.
 //
 using set_type = std::set<value_type>;

 using iterator = set_type::const_iterator;
 using const_iterator = set_type::const_iterator;

 iterator
 begin () const;

 iterator

315Revision 2.6, March 2025 C++ Object Persistence with ODB

15.3 Bulk Database Operations

 end () const;

 // Lookup.
 //
 const value_type*
 operator[] (std::size_t) const;

 // Severity, failed and attempted counts.
 //
 std::size_t
 attempted () const;

 std::size_t
 failed () const;

 bool
 fatal () const;

 void
 fatal (bool);

 // Direct data access.
 //
 const set_type&
 set () const;

 // odb::exception interface.
 //
 virtual const char*
 what () const throw ();
};

The multiple_exceptions class has a map-like interface with the key being the position in

the range and the value being the exception plus the maybe flag (discussed below). As a result,

we can either iterate over the failed positions or we can check whether a specific position in the

range has failed. The following example shows what a catch-handler for this exception might

look like:

std::vector<person> objs {{"John", "Doe"}, {"Jane", "Doe"}};

try
{
 db.persist (objs.begin (), objs.end ());
}
catch (const odb::multiple_exceptions& me)
{
 for (const auto& v: me)
 {
 size_t p (v.position ());

Revision 2.6, March 2025316 C++ Object Persistence with ODB

15.3 Bulk Database Operations

 try
 {
 throw v.exception ();
 }
 catch (const odb::object_already_persistent&)
 {
 cerr << p << ": duplicate id: " << objs[p].id () << endl;
 }
 catch (const odb::exception& e)
 {
 cerr << p << ": " << e.what () << endl;
 }
 }
}

If, however, all we want is to show the diagnostics to the user, then the string returned by the

what() function will contain the error information for each failed position. Here is what it

might look like (using Oracle as an example):

multiple exceptions, 4 elements attempted, 2 failed:
[0] object already persistent
[3] 1: ORA-00001: unique constraint (ODB_TEST.person_last_i) violated

Some databases that currently are capable of bulk operations (specifically, Oracle and SQL

Server) return a total count of affected rows rather than individual counts for each data set. This

limitation prevents ODB from being able to always determine which elements in the batch

haven’t affected any rows and, for the update and erase operations, translate this to the

object_not_persistent exceptions. As a result, if some elements in the batch haven’t

affected any rows and ODB is unable to determine exactly which ones, it will mark all the

elements in this batch as "maybe not persistent". That is, it will insert the

object_not_persistent exception and set the maybe flag for every position in the batch.

The diagnostics string returned by what() will also reflect this situation, for example (assuming

batch size of 3):

multiple exceptions, 4 elements attempted, 4 failed:
[0-2] (some) object not persistent
[3] object not persistent

The way to handle and recover from such "maybe failures" will have to be application-specific.

For example, for some applications the fact that some objects no longer exist in the database

when performing bulk erase might be an ignorable error. If, however, the application needs to

determine exactly which elements in the batch have failed, then a load() call will be required

for each element in the batch (or a query using a view to avoid loading all the data members;

Chapter 10, "Views"). This is also something to keep in mind when selecting the batch size since

for larger sizes it will be more expensive (more loads to perform) to handle such "maybe fail­

ures". If the failures are not uncommon, as is the case, for example, when using optimistic

concurrency, then it may make sense to use a smaller batch.

317Revision 2.6, March 2025 C++ Object Persistence with ODB

15.3 Bulk Database Operations

The lookup operator (operator[]) returns NULL if the element at this position has no excep­

tion. Note also that the returned value is value_type* and not odb::exception* in order

to provide access to the maybe flag discussed above.

The multiple_exceptions class also provides access to the number of positions attempted

(the attempted() accessor) and failed (the failed() accessor). Note that the failed count

includes the "maybe failed" positions.

The multiple_exceptions exception can also be fatal. If the fatal() accessor returns

true, then (some of) the exceptions were fatal. In this case, even for positions that did not fail,

no attempts were made to complete the operation and the transaction must be aborted.

If fatal() returns false, then the operation on the elements that don’t have an exception has

succeeded. The application can ignore the errors or try to correct the errors and re-attempt the

operation on the elements that did fail. In either case, the transaction can be committed.

An example of a fatal exception would be the situation where the execution of the underlying

statement failed summarily, without attempting any data sets, for instance, because of an error in

the statement itself.

The fatal() modifier allows you to "upgrade" an exception to fatal, for example, for specific

database error codes.

Revision 2.6, March 2025318 C++ Object Persistence with ODB

15.3 Bulk Database Operations

PART II DATABASE SYSTEMS

Part II covers topics specific to the database system implementations and their support in ODB.

The first chapter in Part II discusses how to use multiple database systems in the same applica­

tion. The subsequent chapters describe the system-specific database classes as well as the

default mapping between basic C++ value types and native database types. Part II consists of the

following chapters.

16 Multi-Database Support

17 MySQL Database

18 SQLite Database

19 PostgreSQL Database

20 Oracle Database

21 Microsoft SQL Server Database

319Revision 2.6, March 2025 C++ Object Persistence with ODB

PART II DATABASE SYSTEMS

16 Multi-Database Support

Some applications may need to access multiple database systems, either simultaneously or one at

a time. For example, an application may utilize an embedded database such as SQLite as a local

cache and use a client-server database such as PostgreSQL for more permanent but slower to

access remote storage. Or an application may need to be able to store its data in any database

selected at runtime by the user. Yet another scenario is the data migration from one database

system to another. In this case, multi-database support is only required for a short period. It is

also plausible that an application implements all three of these scenarios, that is, it uses SQLite as

a local cache, allows the user to select the remote database system, and supports data migration

from one remote database system to another.

ODB provides two types of multi-database support: static and dynamic. With static support we

use the database system-specific interfaces to perform database operations. That is, instead of

using odb::database, odb::transaction, or odb::query, we would use, for

example, odb::sqlite::database, odb::sqlite::transaction, or

odb::sqlite::query to access an SQLite database.

In contrast, with dynamic multi-database support we can use the common interface to access any

database without having to know which one it is. At runtime, ODB will automatically dispatch a

call on the common interface to the specific database implementation based on the actual

database instance being used. In fact, this mechanism is very similar to C++ virtual functions.

Both static and dynamic multi-database support have a different set of advantages and disadvan­

tages which makes them more or less suitable for different use cases. Static support has zero

overhead compared to single-database support and allows us to use database system-specific

features, extensions, etc. At the same time, the code that we write will be tied to the specific

database system. As a result, this type of multi-database support is more suitable for situations

where different parts of an application access different but specific database systems. For

example, using SQLite as a local cache most likely falls into this category since we are using a

specific database system (SQLite) and the code that will check the cache will most likely (but not

necessarily) be separate from the code that interact with the remote database. Another example

where static multi-database support might be more suitable is a once-off data migration from one

database system to another. In this case both the source and target are specific database systems.

In contrast, if data migration from one database system to another is a general feature in an appli­

cation, then dynamic multi-database support might be more suitable.

The main advantage of dynamic multi-database support is the database system-independence of

the code that we write. The same application code will work with any database system supported

by ODB and the generated database support code can be packaged into separate libraries and

loaded dynamically by the application. The disadvantages of dynamic support are slight overhead

and certain limitations in functionality compared to static support (see Section 16.2, "Dynamic

Multi-Database Support" for details). As a result, dynamic multi-database support is most suitable

Revision 2.6, March 2025320 C++ Object Persistence with ODB

16 Multi-Database Support

to situations where we need the same code to work with a range of database systems. For

example, if your application must be able to store its data in any database selected by the user,

then dynamic support is probably the best option.

Note also that it is possible to mix and match static and dynamic support in the same application.

In fact, dynamic support is built on top of static support so it is possible to use the same database

system both "statically" and "dynamically". In particular, the ability to "drop down" from

dynamic to static support can be used to overcome the functionality limitations mentioned above.

Finally, single-database support is just a special case of static multi-database support with a single

database system.

By default ODB assumes single-database support. To enable multi-database support we use the

--multi-database (or -m) ODB compiler option. This option is also used to specify the

support type: static or dynamic. For example:

odb -m static ... person.hxx

With multi-database support enabled, we can now generate the database support code for several

database systems. This can be accomplished either with a single ODB compiler invocation by

specifying multiple --database (or -d) options or with multiple ODB compiler invocations.

Both approaches produce the same result, for example:

odb -m static -d common -d sqlite -d pgsql person.hxx

Is equivalent to:

odb -m static -d common person.hxx
odb -m static -d sqlite person.hxx
odb -m static -d pgsql person.hxx

Notice that the first -d option has common as its value. This is not a real database system.

Rather, it instructs the ODB compiler to generate code that is common to all the database systems

and, in case of dynamic support, is also the common interfaces.

If you look at the result of the above commands, you will also notice changes in the output file

names. In the single-database mode the ODB compiler produces a single set of the

person-odb.?xx files which contain both the common as well as the database specific gener­

ated code (since there is only one database system in use, there is no reason to split the two). In

contrast, in the multi-database mode, the person-odb.?xx set of files contains the common

code while the database system-specific code is written to files in the form

person-odb-<db>.?xx. That is, person-odb-sqlite.?xx for SQLite,

person-odb-pgsql.?xx for PostgreSQL, etc.

321Revision 2.6, March 2025 C++ Object Persistence with ODB

16 Multi-Database Support

If we need dynamic support for some databases and static for others, then the common code must

be generated in the dynamic mode. For example, if we need static support for SQLite and

dynamic support for PostgreSQL and Oracle, then the ODB compiler invocations could look like

this:

odb -m dynamic -d common person.hxx
odb -m static -d sqlite person.hxx
odb -m dynamic -d pgsql person.hxx
odb -m dynamic -d oracle person.hxx

With multi-database support enabled, it is possible to restrict ODB pragmas to apply only to a

specific database system (unrestricted pragmas apply to all the databases). For example:

#pragma db object
class person
{
 ...

 #pragma db pgsql:type("VARCHAR(128)") sqlite:type("TEXT")
 std::string name_;

 unsigned short age_;

 #pragma db pgsql index member(age_)
};

Above, the pragma for the name_ data member shows the use of a database prefix (for example,

pgsql:) that only applies to the specifier that follows. The pragma that defines an index on the

age_ data member shows the use of a database prefix that applies to the whole pragma. In this

case the database name must immediately follow the db keyword.

Similar to pragmas, ODB compiler options that determine the kind (for example,

--schema-format), names (for example, --odb-file-suffix), or content (for example,

prologue and epilogue options) of the output files can be prefixed with the database name. For

example:

odb --odb-file-suffix common:-odb-common ...

Dynamic multi-database support requires consistent mapping across all the databases. That is, the

same classes and data members should be mapped to objects, simple/composite values, etc., for

all the databases. In contrast, static multi-database support does not have this restriction. Specifi­

cally, with static support, some data members can be transient for some database systems. Simi­

larly, the same class (for example, point) can be mapped to a simple value in one database (for

example, to the POINT PostgreSQL type) and to a composite value in another (for example, in

SQLite, which does not have a built-in point type).

Revision 2.6, March 2025322 C++ Object Persistence with ODB

16 Multi-Database Support

The following sections discuss static and dynamic multi-database support in more detail.

16.1 Static Multi-Database Support

With static multi-database support, instead of including person-odb.hxx, application source

code has to include person-odb-<db>.hxx header files corresponding to the database

systems that will be used.

The application code has to also use database system-specific interfaces when performing

database operations. As an example, consider the following transaction in a single-database appli­

cation. It uses the common interfaces, that is, classes from the odb namespace.

#include "person-odb.hxx"

odb::database& db = ...

using query = odb::query<person>;
using result = odb::result<person>;

odb::transaction t (db.begin ());
result r (db.query<person> (query::age < 30));
...
t.commit ();

In an application that employs static multi-database support the same transaction for SQLite

would be rewritten like this:

#include "person-odb-sqlite.hxx"

odb::sqlite::database& db = ...

using query = odb::sqlite::query<person>;
using result = odb::result<person>; // odb:: not odb::sqlite::

odb::sqlite::transaction t (db.begin ());
result r (db.query<person> (query::age < 30));
...
t.commit ();

That is, the database, transaction, and query classes now come from the

odb::sqlite namespace instead of odb. Other classes that have database system-specific

interfaces are connection, statement, and tracer. Note that all of them derive from the

corresponding common versions. It is also possible to use common transaction, connec­
tion, and statement classes with static support, if desired.

323Revision 2.6, March 2025 C++ Object Persistence with ODB

16.1 Static Multi-Database Support

Notice that we didn’t use the odb::sqlite namespace for the result class template. This is

because result is database system-independent. All other classes defined in namespace odb,

except those specifically mentioned above, are database system-independent. In particular,

result, prepared_query, session, schema_catalog, and all the exceptions are

database system-independent.

Writing odb::sqlite:: before every name can quickly become burdensome. As we have

seen before, in single-database applications that use the common interface we can add the using
namespace directive to avoid qualifying each name. For example:

#include "person-odb.hxx"

odb::database& db = ...

{
 using namespace odb::core;

 using person_query = query<person>;
 using person_result = result<person>;

 transaction t (db.begin ());
 person_result r (db.query<person> (person_query::age < 30));
 ...
 t.commit ();
}

A similar mechanism is available in multi-database support. Each database runtime defines the

odb::<db>::core namespace that contains all the database system-independent names as

well as the database system-specific ones for this database. Here is how we can rewire the above

transaction using this approach:

#include "person-odb-sqlite.hxx"

odb::sqlite::database& db = ...

{
 using namespace odb::sqlite::core;

 using person_query = query<person>;
 using person_result = result<person>;

 transaction t (db.begin ());
 person_result r (db.query<person> (person_query::age < 30));
 ...
 t.commit ();
}

Revision 2.6, March 2025324 C++ Object Persistence with ODB

16.1 Static Multi-Database Support

If the using namespace directive cannot be used, for example, because the same code frag­

ment accesses several databases, then we can still make the namespace qualifications more

concise by assigning shorter aliases to database namespaces. For example:

#include "person-odb-pgsql.hxx"
#include "person-odb-sqlite.hxx"

namespace pg = odb::pgsql;
namespace sl = odb::sqlite;

pg::database& pg_db = ...
sl::database& sl_db = ...

using pg_query = pg::query<person>;
using sl_query = sl::query<person>;
using result = odb::result<person>;

// First check the local cache.
//
odb::transaction t (sl_db.begin ()); // Note: using common transaction.
result r (sl_db.query<person> (sl_query::age < 30));

// If no hits, try the remote database.
//
if (r.empty ())
{
 t.commit (); // End the SQLite transaction.
 t.reset (pg_db.begin ()); // Start the PostgreSQL transaction.

 r = pg_db.query<person> (pg_query::age < 30);
}

// Handle the result.
//
...

t.commit ();

With static multi-database support we can make one of the databases the default database with the

--default-database option. The default database can be accessed via the common inter­

face, just like with single-database support. For example:

odb -m static -d common -d pgsql -d sqlite --default-database pgsql ...

The default database mechanism can be useful when one of the databases is primary or when

retrofitting multi-database support into an existing single-database application. For example, if

we are adding SQLite as a local cache into an existing application that uses PostgreSQL as its

only database, then by making PostgreSQL the default database we avoid having to change all the

existing code. Note that if dynamic multi-database support is enabled, then the common

325Revision 2.6, March 2025 C++ Object Persistence with ODB

16.1 Static Multi-Database Support

(dynamic) interface is always made the default database.

16.2 Dynamic Multi-Database Support

With dynamic multi-database support, application source code only needs to include the

person-odb.hxx header file, just like with single-database support. In particular, we don’t

need to include any of the person-odb-<db>.hxx files unless we would also like to use

certain database systems in the static multi-database mode.

When performing database operations, the application code uses the common interfaces from the

odb namespace, just like with single-database support. As an example, consider a function that

can be used to load an object either from a local SQLite cache or a remote PostgreSQL database

(in reality, this function can be used with any database system support by ODB provided we

generated the database support code for this database and linked it into our application):

#include "person-odb.hxx"

std::unique_ptr<person>
load (odb::database& db, const std::string& name)
{
 odb::transaction t (db.begin ());
 std::unique_ptr<person> p (db.find (name));
 t.commit ();
 return p;
}

odb::pgsql::database& pg_db = ...
odb::sqlite::database& sl_db = ...

// First try the local cache.
//
std::unique_ptr<person> p (load (sl_db, "John Doe"));

// If not found, try the remote database.
//
if (p == 0)
 p = load (pg_db, "John Doe");

...

As you can see, we can use dynamic multi-database support just like single-database support

except that now our code can work with different database systems. Note, however, one differ­

ence: with single-database support we could perform database operations using either the

common odb::database or a database system-specific (for example,

odb::sqlite::database) interface with the same effect. In contrast, with dynamic

multi-database support, the use of the database system-specific interface results in the switch to

the static mode (for which, as was mentioned earlier, we would need to include the corresponding

Revision 2.6, March 2025326 C++ Object Persistence with ODB

16.2 Dynamic Multi-Database Support

person-odb-<db>.hxx header file). As we will discuss shortly, switching from dynamic to

static mode can be used to overcome limitations imposed by dynamic multi-database support.

Dynamic multi-database support has certain overheads and limitations compared to static support.

For database operations, the generated code maintains function tables that are used to dispatch

calls to the database system-specific implementations. In single-database and static

multi-database support, the query type implements a thin wrapper around the underlying

database system’s SELECT statement. With dynamic multi-database support, because the under­

lying database system is only known at query execution (or preparation) time, the query type

stores a database system-independent representation of the query that is then translated to the

database system-specific form. Because of this database system-independent representation,

dynamic support queries have a number of limitations. Specifically, dynamic queries do not

support parameter binding in native query fragments. They also make copies of by-value parame­

terd (by-reference parameters can be used to remove this overhead). Finally, parameters of array

types (for example, char[256]) can only be bound by-reference.

As we mentioned earlier, switching from dynamic to static mode can be an effective way to over­

come these limitations. As an example, consider a function that prints the list of people of a

certain age. The caller also specified the limit on the number of entries to print. Some database

systems, for example, PostgreSQL, allow us to propagate this limit to the database server with the

LIMIT clause. To add this clause we would need to construct a native query fragment and, as we

discussed above, we won’t be able to bind a parameter (the limit) while in the dynamic mode.

The following implementation shows how we can overcome this by switching to the static mode

and using the PostgreSQL-specific interface:

#include "person-odb.hxx"
#include "person-odb-pgsql.hxx" // Needed for static mode.

void
print (odb::database& db, unsigned short age, unsigned long limit)
{
 using query = odb::query<person>;
 using result = odb::result<person>;

 odb::transaction t (db.begin ());

 query q (query::age == age);
 result r;

 if (db.id () == odb::id_pgsql)
 {
 // We are using PostgreSQL. Drop down to the static mode and
 // add the LIMIT clause to the query.
 //
 namespace pg = odb::pgsql;
 using pg_query = pg::query<person>;

327Revision 2.6, March 2025 C++ Object Persistence with ODB

16.2 Dynamic Multi-Database Support

 pg::database& pg_db (static_cast<pg::database&> (db));
 pg_query pg_q (pg_query (q) + "LIMIT" + pg_query::_val (limit));
 r = pg_db.query<person> (pg_q);
 }
 else
 r = db.query<person> (q);

 // Handle the result up to the limit elements.
 //
 ...

 t.commit ();
}

odb::pgsql::database& pg_db = ...
odb::sqlite::database& sl_db = ...

print (sl_db, 30, 100);
print (sl_db, 30, 100);

A few things to note about this example. First, we use the database::id() function to deter­

mine the actual database system we use. This function has the following signature:

namespace odb
{
 enum database_id
 {
 id_mysql,
 id_sqlite,
 id_pgsql,
 id_oracle,
 id_mssql,
 id_common
 };

 class database
 {
 public:
 ...

 database_id
 id () const;
 }
}

Note that database::id() can never return the id_common value.

The other thing to note is how we translate the dynamic query to the database system-specific one

(the pg_query (q) expression). Every odb::<db>::query class provides such a transla­

tion constructor.

Revision 2.6, March 2025328 C++ Object Persistence with ODB

16.2 Dynamic Multi-Database Support

16.2.2 Dynamic Loading of Database Support Code

With dynamic multi-database support, the generated database support code automatically regis­

ters itself with the function tables that we mentioned earlier. This makes it possible to package the

generated code for each database into a separate dynamic-link library (Windows DLL) or

dynamic shared object (Unix DSO; collectively referred to as DLLs from now on) and

load/unload them from the application dynamically using APIs such as Win32 LoadLi­
brary() or POSIX dlopen(). This allows the application address space to contain code only

for database systems that are actually needed in any particular moment. Another advantage of this

approach is the ability to distribute individual database system support separately.

This section provides an overview of how to package the generated database support code into

DLLs for both Windows and Unix using GNU/Linux as an example. Note also that if static

multi-database support is used for a particular database system, then the dynamic loading cannot

be used for this database. It is, however, still possible to package the generated code into a DLL

but this DLL will have to be linked to the executable at link-time rather than at runtime. If

dynamic loading is desirable in this situation, then another alternative would be to package the

functionality that requires static support together with the database support code into the DLL and

import this functionality dynamically using the GetProcAddress() (Win32) or dlsym()
(Unix) function.

The first step in packaging the generated code into DLLs is to set up the symbol exporting. This

step is required for Windows DLLs but is optional for Unix DSOs. Most modern Unix systems

(such as GNU/Linux) provide control over symbol visibility, which is a mechanism similar to

Windows symbol exporting. Notable advantages of using this mechanism to explicitly specify

which symbols are visible include smaller Unix DSOs and faster load times. If, however, you are

not planning to control symbol visibility on Unix, then you can skip directly to the second step

below.

An important point to understand is that we only need to export the common interface, that is, the

classes defined in the person-odb.hxx header. In particular, we don’t need to export the

database system-specific classes defined in the person-odb-<db>.hxx, unless we are also

using this database in the static mode (in which case, the procedure described below will need to

be repeated for that database as well).

The ODB compiler provides two command line options, --export-symbol and

--extern-symbol, which can be used to insert the export and extern macros in all the neces­

sary places in the generated header file. You are probably familiar with the concept of export

macro which expands to an export directive if we are building the DLL and to an import directive

if we are building client code. The extern macro is a supplementary mechanism which is neces­

sary to export explicit template instantiations used by the generated code when query support is

enabled. As we will see shortly, the extern macro must expand into the extern C++ keyword in

certain situations and must be left undefined in others. To manage all these macro definitions, it is

329Revision 2.6, March 2025 C++ Object Persistence with ODB

16.2.2 Dynamic Loading of Database Support Code

customary to create the so called export header. Based on a single macro that is normally defined

in the project file or on the command line and which indicates whether we are building the DLL

or client code, the export header file sets the export and extern macros to their appropriate values.

Continuing with our person example, on Windows the export header, which we will call

person-export.hxx, could look like this:

// person-export.hxx
//
// Define PERSON_BUILD_DLL if we are building the DLL. Leave it
// undefined in client code.
//
#ifndef PERSON_EXPORT_HXX
#define PERSON_EXPORT_HXX

#ifdef PERSON_BUILD_DLL
define PERSON_EXPORT __declspec(dllexport)
#else
define PERSON_EXPORT __declspec(dllimport)
define PERSON_EXTERN extern
#endif

#endif // PERSON_EXPORT_HXX

The equivalent export header for GCC on GNU/Linux is shown below. Note also that on

GNU/Linux, by default, all symbols are visible and we need to add the GCC -fvisibil­
ity=hidden option to make them hidden by default.

// person-export.hxx
//
#ifndef PERSON_EXPORT_HXX
#define PERSON_EXPORT_HXX

#define PERSON_EXPORT __attribute__ ((visibility ("default")))
#define PERSON_EXTERN extern

#endif // PERSON_EXPORT_HXX

Next we need to export the person persistent class using the export macro and re-compile our

person.hxx file with the --export-symbol and --extern-symbol options. We will

also need to include person-export.hxx into the generated person-odb.hxx file. For

that we use the --hxx-prologue option. Here is how we can do this with multiple invocations

of the ODB compiler:

odb -m dynamic -d common --hxx-prologue "#include \"person-export.hxx\"" \
--export-symbol PERSON_EXPORT --extern-symbol PERSON_EXTERN person.hxx

odb -m dynamic -d sqlite person.hxx
odb -m dynamic -d pgsql person.hxx

Revision 2.6, March 2025330 C++ Object Persistence with ODB

16.2.2 Dynamic Loading of Database Support Code

It is also possible to achieve the same with a single invocation. Here we need to restrict some

option values to apply only to the common database:

odb -m dynamic -d common -d sqlite -d pgsql \
--hxx-prologue "common:#include \"person-export.hxx\"" \
--export-symbol common:PERSON_EXPORT --extern-symbol common:PERSON_EXTERN \
person.hxx

The second step in packaging the generated code into DLLs is to decide where to place the gener­

ated common interface code. One option is to place it into a DLL of its own so that we will end

up with (replace *.dll with lib*.so for Unix): person.dll plus person-sqlite.dll
and person-pgsql.dll, which both link to person.dll, as well as person.exe, which

links to person.dll and dynamically loads person-sqlite.dll and/or

person-pgsql.dll. If this is the organization that you prefer, then the next step is to build

all the DLLs as you normally would any other DLL, placing person-odb.cxx and

person.cxx into person.dll, person-odb-sqlite.cxx into

person-sqlite.dll, etc. Note that in the pure dynamic multi-database support,

person-sqlite.dll and person-pgsql.dll do not export any symbols.

We can improve on the above organization by getting rid of person.dll, which is not really

necessary unless we have multiple executables sharing the same database support. To achieve

this, we will place person-odb.cxx into person.exe and export its symbols from the

executable instead of a DLL. Exporting symbols from an executable is a seldom used functional­

ity, especially on Windows, however, it is well supported on both Windows and most Unix plat­

forms. Note also that this approach won’t work if we also use one of the databases in the static

mode.

On Windows all we have to do is place person-odb.cxx into the executable and compile it as

we would in a DLL (that is, with the PERSON_BUILD_DLL macro defined). If Windows linker

detects that an executable exports any symbols, then it will automatically create the correspond­

ing import library (person.lib in our case). We then use this import library to build

person-sqlite.dll and person-pgsql.dll as before.

To export symbols from an executable on GNU/Linux all we need to do is add the -rdynamic
option when linking our executable.

331Revision 2.6, March 2025 C++ Object Persistence with ODB

16.2.2 Dynamic Loading of Database Support Code

17 MySQL Database

To generate support code for the MySQL database you will need to pass the

"--database mysql" (or "-d mysql") option to the ODB compiler. Your application will

also need to link to the MySQL ODB runtime library (libodb-mysql). All MySQL-specific

ODB classes are defined in the odb::mysql namespace.

17.1 MySQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and MySQL

database types. This mapping can be customized on the per-type and per-member basis using the

ODB Pragma Language (Chapter 14, "ODB Pragma Language").

C++ Type MySQL Type Default NULL Semantics

bool TINYINT(1) NOT NULL

char CHAR(1) NOT NULL

signed char TINYINT NOT NULL

unsigned char TINYINT UNSIGNED NOT NULL

short SMALLINT NOT NULL

unsigned short SMALLINT UNSIGNED NOT NULL

int INT NOT NULL

unsigned int INT UNSIGNED NOT NULL

long BIGINT NOT NULL

unsigned long BIGINT UNSIGNED NOT NULL

long long BIGINT NOT NULL

unsigned long long BIGINT UNSIGNED NOT NULL

float FLOAT NOT NULL

double DOUBLE NOT NULL

std::string TEXT/VARCHAR(128) NOT NULL

char[N] VARCHAR(N-1) NOT NULL

Revision 2.6, March 2025332 C++ Object Persistence with ODB

17 MySQL Database

It is possible to map the char C++ type to an integer database type (for example, TINYINT)

using the db type pragma (Section 14.4.3, "type").

Note that the std::string type is mapped differently depending on whether a member of this

type is an object id or not. If the member is an object id, then for this member std::string is

mapped to the VARCHAR(128) MySQL type. Otherwise, it is mapped to TEXT.

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to suit­

able MySQL types. Contiguous enumerations with the zero first enumerator are mapped to the

MySQL ENUM type. All other enumerations are mapped to the MySQL types corresponding to

their underlying integral types (see table above). In both cases the default NULL semantics is NOT
NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1, // Non-zero first enumerator.
 sweet,
 sour = 4, // Non-contiguous.
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Mapped to ENUM (’red’, ’green’, ’blue’) NOT NULL.
 taste taste_; // Mapped to TINYNT UNSIGNED NOT NULL.
};

The only built-in mapping provided for the MySQL DECIMAL type is to

std::string/char[N], for example:

#pragma db object
class object
{
 ...

 #pragma db type ("DECIMAL(6,3)")
 std::string value_;
};

You can, however, map DECIMAL to a custom C++ type by providing a suitable

odb::mysql::value_traits specialization.

333Revision 2.6, March 2025 C++ Object Persistence with ODB

17.1 MySQL Type Mapping

It is also possible to add support for additional MySQL types, such as geospatial types. For more

information, refer to Section 14.8, "Database Type Mapping Pragmas".

17.1.1 String Type Mapping

The MySQL ODB runtime library provides support for mapping the std::string, char[N],

and std::array<char, N> types to the MySQL CHAR, VARCHAR, TEXT, NCHAR, and

NVARCHAR types. However, these mappings are not enabled by default (in particular, by default,

std::array will be treated as a container). To enable the alternative mappings for these types

we need to specify the database type explicitly using the db type pragma (Section 14.4.3,

"type"), for example:

#pragma db object
class object
{
 ...

 #pragma db type("CHAR(2)")
 char state_[2];

 #pragma db type("VARCHAR(128)")
 std::string name_;
};

Alternatively, this can be done on the per-type basis, for example:

#pragma db value(std::string) type("VARCHAR(128)")

#pragma db object
class object
{
 ...

 std::string name_; // Mapped to VARCHAR(128).
};

The char[N] and std::array<char, N> values may or may not be zero-terminated.

When extracting such values from the database, ODB will append the zero terminator if there is

enough space.

17.1.2 Binary Type Mapping

The MySQL ODB runtime library provides support for mapping the std::vector<char>,

std::vector<unsigned char>, char[N], unsigned char[N],

std::array<char, N>, and std::array<unsigned char, N> types to the MySQL

BINARY, VARBINARY, and BLOB types. However, these mappings are not enabled by default

(in particular, by default, std::vector and std::array will be treated as containers). To

Revision 2.6, March 2025334 C++ Object Persistence with ODB

17.1.1 String Type Mapping

enable the alternative mappings for these types we need to specify the database type explicitly

using the db type pragma (Section 14.4.3, "type"), for example:

#pragma db object
class object
{
 ...

 #pragma db type("BLOB")
 std::vector<char> buf_;

 #pragma db type("BINARY(16)")
 unsigned char uuid_[16];
};

Alternatively, this can be done on the per-type basis, for example:

using buffer = std::vector<char>;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to BLOB.
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and

std::array<char, N> parameters are by default passed as a string rather than a binary. To

pass such parameters as a binary, we need to specify the database type explicitly in the

_val()/_ref() calls. Note also that we don’t need to do this for the integrated queries, for

example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::mysql::id_blob> (u));
db.query<object> (query::uuid == query::_ref (u));

17.1.3 Mixed Automatic/0 Object Id Assignment

In MySQL an automatic object id can also be set manually to 0. For example:

 #pragma db id auto
 odb::nullable<int64_t> id;

335Revision 2.6, March 2025 C++ Object Persistence with ODB

17.1.3 Mixed Automatic/0 Object Id Assignment

Then, when used with the NO_AUTO_VALUE_ON_ZERO mode, set the id member to NULL to

get auto-assignment or to 0 to use 0 as the id. This functionality is normally used to assign the

special 0 id to a special object.

17.2 MySQL Database Class

The MySQL database class has the following interface:

namespace odb
{
 namespace mysql
 {
 class database: public odb::database
 {
 public:
 database (const char* user,
 const char* passwd,
 const char* db,
 const char* host = 0,
 unsigned int port = 0,
 const char* socket = 0,
 const char* charset = 0,
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& passwd,
 const std::string& db,
 const std::string& host = "",
 unsigned int port = 0,
 const std::string* socket = 0,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string* passwd,
 const std::string& db,
 const std::string& host = "",
 unsigned int port = 0,
 const std::string* socket = 0,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& passwd,
 const std::string& db,
 const std::string& host,
 unsigned int port,

Revision 2.6, March 2025336 C++ Object Persistence with ODB

17.2 MySQL Database Class

 const std::string& socket,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string* passwd,
 const std::string& db,
 const std::string& host,
 unsigned int port,
 const std::string& socket,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (int& argc,
 char* argv[],
 bool erase = false,
 const std::string& charset = "",
 unsigned long client_flags = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const char*
 user () const;

 const char*
 password () const;

 const char*
 db () const;

 const char*
 host () const;

 unsigned int
 port () const;

 const char*
 socket () const;

 const char*
 charset () const;

 unsigned long
 client_flags () const;

 public:

337Revision 2.6, March 2025 C++ Object Persistence with ODB

17.2 MySQL Database Class

 connection_ptr
 connection ();
 };
 }
}

You will need to include the <odb/mysql/database.hxx> header file to make this class

available in your application.

The overloaded database constructors allow us to specify MySQL database parameters that

should be used when connecting to the database. In MySQL NULL and an empty string are

treated as the same values for all the string parameters except password and socket.

The charset argument allows us to specify the client character set, that is, the character set in

which the application will encode its text data. Note that this can be different from the MySQL

server character set. If this argument is not specified or is empty, then the default MySQL client

character set is used, normally latin1. Commonly used values for this argument are latin1

(equivalent to Windows cp1252 and similar to ISO-8859-1) and utf8. For other possible values

as well as more information on character set support in MySQL, refer to the MySQL documenta­

tion.

The client_flags argument allows us to specify various MySQL client library flags. For

more information on the possible values, refer to the MySQL C API documentation. The

CLIENT_FOUND_ROWS flag is always set by the MySQL ODB runtime regardless of whether it

was passed in the client_flags argument.

The last constructor extracts the database parameters from the command line. The following

options are recognized:

 --user <login>
 --password <password>
 --database <name>
 --host <host>
 --port <integer>
 --socket <socket>
 --options-file <file>

The --options-file option allows us to specify some or all of the database options in a file

with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the

argv array and the argc count is updated accordingly. This is primarily useful if your applica­

tion accepts other options or arguments and you would like to get the MySQL options out of the

argv array.

Revision 2.6, March 2025338 C++ Object Persistence with ODB

17.2 MySQL Database Class

This constructor throws the odb::mysql::cli_exception exception if the MySQL option

values are missing or invalid. See section Section 17.4, "MySQL Exceptions" for more informa­

tion on this exception.

The static print_usage() function prints the list of options with short descriptions that are

recognized by this constructor.

The last argument to all of the constructors is a pointer to the connection factory. In C++98/03, it

is std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a

non-NULL value, the database instance assumes ownership of the factory instance. The connec­

tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the

database instance.

The connection() function returns a pointer to the MySQL database connection encapsulated

by the odb::mysql::connection class. For more information on mysql::connection,

refer to Section 17.3, "MySQL Connection and Connection Factory".

17.3 MySQL Connection and Connection Factory

The mysql::connection class has the following interface:

namespace odb
{
 namespace mysql
 {
 class connection: public odb::connection
 {
 public:
 connection (database&);
 connection (database&, MYSQL*);

 MYSQL*
 handle ();
 };

 using connection_ptr = details::shared_ptr<connection>;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connections".

The first overloaded mysql::connection constructor establishes a new MySQL connection.

The second constructor allows us to create a connection instance by providing an already

connected native MySQL handle. Note that the connection instance assumes ownership of

this handle. The handle() accessor returns the MySQL handle corresponding to the connec­

339Revision 2.6, March 2025 C++ Object Persistence with ODB

17.3 MySQL Connection and Connection Factory

tion.

The mysql::connection_factory abstract class has the following interface:

namespace odb
{
 namespace mysql
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database

instance. This happens in the odb::mysql::database class constructors. The connect()

function is called whenever a database connection is requested.

The two implementations of the connection_factory interface provided by the MySQL

ODB runtime are new_connection_factory and connection_pool_factory. You

will need to include the <odb/mysql/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli­

cation.

The new_connection_factory class creates a new connection whenever one is requested.

When a connection is no longer needed, it is released and closed. The new_connec­
tion_factory class has the following interface:

namespace odb
{
 namespace mysql
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the following

interface:

Revision 2.6, March 2025340 C++ Object Persistence with ODB

17.3 MySQL Connection and Connection Factory

namespace odb
{
 namespace mysql
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0,
 bool ping = true);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&);
 pooled_connection (database_type&, MYSQL*);
 };

 using pooled_connection_ptr = details::shared_ptr<pooled_connection>;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor speci­

fies the maximum number of concurrent connections that this pool factory will maintain. Simi­

larly, the min_connections argument specifies the minimum number of available connec­

tions that should be kept open. The ping argument specifies whether the factory should validate

the connection before returning it to the caller.

Whenever a connection is requested, the pool factory first checks if there is an unused connection

that can be returned. If there is none, the pool factory checks the max_connections value to

see if a new connection can be created. If the total number of connections maintained by the pool

is less than this value, then a new connection is created and returned. Otherwise, the caller is

blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting

for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the

pool factory checks whether the total number of connections maintained by the pool is greater

than the min_connections value. If that’s the case, the connection is closed. Otherwise, the

connection is added to the pool of available connections to be returned on the next request. In

other words, if the number of connections maintained by the pool exceeds min_connections
and there are no callers waiting for a new connection, then the pool will close the excess connec­

tions.

341Revision 2.6, March 2025 C++ Object Persistence with ODB

17.3 MySQL Connection and Connection Factory

If the max_connections value is 0, then the pool will create a new connection whenever all

of the existing connections are in use. If the min_connections value is 0, then the pool will

never close a connection and instead maintain all the connections that were ever created.

Connection validation (the ping argument) is useful if your application may experience long

periods of inactivity. In such cases the MySQL server may close network connections that have

been inactive for too long. If during connection validation the pool factory detects that the

connection has been terminated, it silently closes it and tries to find or create another connection

instead.

The create() virtual function is called whenever the pool needs to create a new connection.

By deriving from the connection_pool_factory class and overriding this function we can

implement custom connection establishment and configuration.

If you pass NULL as the connection factory to one of the database constructors, then the

connection_pool_factory instance will be created by default with the min and max

connections values set to 0 and connection validation enabled. The following code fragment

shows how we can pass our own connection factory instance:

#include <odb/database.hxx>

#include <odb/mysql/database.hxx>
#include <odb/mysql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 unique_ptr<odb::mysql::connection_factory> f (
 new odb::mysql::connection_pool_factory (20));

 unique_ptr<odb::database> db (
 new mysql::database (argc, argv, false, 0, f));
}

17.4 MySQL Exceptions

The MySQL ODB runtime library defines the following MySQL-specific exceptions:

namespace odb
{
 namespace mysql
 {
 class database_exception: odb::database_exception
 {
 public:
 unsigned int
 error () const;

Revision 2.6, March 2025342 C++ Object Persistence with ODB

17.4 MySQL Exceptions

 const std::string&
 sqlstate () const;

 const std::string&
 message () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };
 }
}

You will need to include the <odb/mysql/exceptions.hxx> header file to make these

exceptions available in your application.

The odb::mysql::database_exception is thrown if a MySQL database operation fails.

The MySQL-specific error information is accessible via the error(), sqlstate(), and

message() functions. All this information is also combined and returned in a human-readable

form by the what() function.

The odb::mysql::cli_exception is thrown by the command line parsing constructor of

the odb::mysql::database class if the MySQL option values are missing or invalid. The

what() function returns a human-readable description of an error.

17.5 MySQL Limitations

The following sections describe MySQL-specific limitations imposed by the current MySQL and

ODB runtime versions.

17.5.1 Foreign Key Constraints

ODB relies on standard SQL behavior which requires that foreign key constraints checking is

deferred until the transaction is committed. The only behaviors supported by MySQL are to either

check such constraints immediately (InnoDB engine) or to ignore foreign key constraints alto­

gether (all other engines). As a result, by default, schemas generated by the ODB compiler for

MySQL have foreign key definitions commented out. They are retained only for documentation.

343Revision 2.6, March 2025 C++ Object Persistence with ODB

17.5 MySQL Limitations

You can override the default behavior and instruct the ODB compiler to generate non-deferrable

foreign keys by specifying the --fkeys-deferrable-mode not_deferrable ODB

compiler option. Note, however, that in this case the order in which you persist, update, and erase

objects within a transaction becomes important.

17.6 MySQL Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define a MySQL

index, the type clause specifies the index type (for example, UNIQUE, FULLTEXT, SPATIAL),

the method clause specifies the index method (for example, BTREE, HASH), and the options
clause is not used. The column options can be used to specify column length limits and the sort

order. For example:

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index method("HASH") member(name_, "(100) DESC")
};

17.7 MySQL Stored Procedures

ODB native views (Section 10.6, "Native Views") can be used to call MySQL stored procedures.

For example, assuming we are using the person class from Chapter 2, "Hello World Example"

(and the corresponding person table), we can create a stored procedure that given the min and

max ages returns some information about all the people in that range:

CREATE PROCEDURE person_range (
 IN min_age SMALLINT,
 IN max_age SMALLINT)
BEGIN
 SELECT age, first, last FROM person
 WHERE age >= min_age AND age <= max_age;
END

Given the above stored procedure we can then define an ODB view that can be used to call it and

retrieve its result:

Revision 2.6, March 2025344 C++ Object Persistence with ODB

17.6 MySQL Index Definitions

#pragma db view query("CALL person_range((?))")
struct person_range
{
 unsigned short age;
 std::string first;
 std::string last;
};

The following example shows how we can use the above view to print the list of people in a

specific age range:

using query = odb::query<person_range>;
using result = odb::result<person_range>;

transaction t (db.begin ());

result r (
 db.query<person_range> (
 query::_val (1) + "," + query::_val (18)));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cerr << i->first << " " << i->last << " " << i->age << endl;

t.commit ();

Note that as with all native views, the order and types of data members must match those of

columns in the SELECT list inside the stored procedure.

There are also a number of limitations when it comes to support for MySQL stored procedures in

ODB views. First of all, you have to use MySQL server and client libraries version 5.5.3 or later

since this is the version in which support for calling stored procedures with prepared statements

was first added (the mysql_stmt_next_result() function).

In MySQL, a stored procedure can produce multiple results. For example, if a stored procedure

executes several SELECT statements, then the result of calling such a procedure consists of

multiple row sets, one for each SELECT statement. Additionally, if the procedure has any OUT or

INOUT parameters, then their values are returned as an additional special row set containing only

a single row. Because such multiple row sets can contain varying number and type of columns,

they cannot be all extracted into a single view. As a result, an ODB view will only extract the

data from the first row set and ignore all the subsequent ones.

In particular, this means that we can use an ODB view to extract the values of the OUT and

INOUT parameters provided that the stored procedure does not generate any other row sets. For

example:

345Revision 2.6, March 2025 C++ Object Persistence with ODB

17.7 MySQL Stored Procedures

CREATE PROCEDURE person_min_max_age (
 OUT min_age SMALLINT,
 OUT max_age SMALLINT)
BEGIN
 SELECT MIN(age), MAX(age) INTO min_age, max_age FROM person;
END

#pragma db view query("CALL person_min_max_age((?))")
struct person_min_max_age
{
 unsigned short min_age;
 unsigned short max_age;
};

using query = odb::query<person_min_max_age>;

transaction t (db.begin ());

// We know this query always returns a single row, so use query_value().
// We have to pass dummy values for OUT parameters.
//
person_min_max_age mma (
 db.query_value<person_min_max_age> (
 query::_val (0) + "," + query::_val (0)));

cerr << mma.min_age << " " << mma.max_age << endl;

t.commit ();

Another limitation that stems from having multiple results is the inability to cache the result of a

stored procedure call. In other words, a MySQL stored procedure call always produces an

uncached query result (Section 4.4, "Query Result").

Revision 2.6, March 2025346 C++ Object Persistence with ODB

17.7 MySQL Stored Procedures

18 SQLite Database

To generate support code for the SQLite database you will need to pass the

"--database sqlite" (or "-d sqlite") option to the ODB compiler. Your application

will also need to link to the SQLite ODB runtime library (libodb-sqlite). All

SQLite-specific ODB classes are defined in the odb::sqlite namespace.

18.1 SQLite Type Mapping

The following table summarizes the default mapping between basic C++ value types and SQLite

database types. This mapping can be customized on the per-type and per-member basis using the

ODB Pragma Language (Chapter 14, "ODB Pragma Language").

347Revision 2.6, March 2025 C++ Object Persistence with ODB

18 SQLite Database

C++ Type SQLite Type Default NULL Semantics

bool INTEGER NOT NULL

char TEXT NOT NULL

signed char INTEGER NOT NULL

unsigned char INTEGER NOT NULL

short INTEGER NOT NULL

unsigned short INTEGER NOT NULL

int INTEGER NOT NULL

unsigned int INTEGER NOT NULL

long INTEGER NOT NULL

unsigned long INTEGER NOT NULL

long long INTEGER NOT NULL

unsigned long long INTEGER NOT NULL

float REAL NULL

double REAL NULL

std::string TEXT NOT NULL

char[N] TEXT NOT NULL

std::wstring (Windows only) TEXT NOT NULL

wchar_t[N] (Windows only) TEXT NOT NULL

odb::sqlite::text TEXT (STREAM) NOT NULL

odb::sqlite::blob BLOB (STREAM) NOT NULL

It is possible to map the char C++ type to the INTEGER SQLite type using the db type
pragma (Section 14.4.3, "type").

SQLite represents the NaN FLOAT value as a NULL value. As a result, columns of the float
and double types are by default declared as NULL. However, you can override this by explicitly

declaring them as NOT NULL with the db not_null pragma (Section 14.4.6,

"null/not_null").

Revision 2.6, March 2025348 C++ Object Persistence with ODB

18.1 SQLite Type Mapping

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to the

SQLite INTEGER type with the default NULL semantics being NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1,
 sweet,
 sour = 4,
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Automatically mapped to INTEGER.
 taste taste_; // Automatically mapped to INTEGER.
};

Note also that SQLite only operates with signed integers and the largest value that an SQLite

database can store is a signed 64-bit integer. As a result, greater unsigned long and

unsigned long long values will be represented in the database as negative values.

It is also possible to add support for additional SQLite types, such as NUMERIC. For more infor­

mation, refer to Section 14.8, "Database Type Mapping Pragmas".

18.1.1 String Type Mapping

The SQLite ODB runtime library provides support for mapping the std::array<char, N>
and, on Windows, std::array<wchar_t, N> types to the SQLite TEXT type. However,

this mapping is not enabled by default (in particular, by default, std::array will be treated as

a container). To enable the alternative mapping for this type we need to specify the database type

explicitly using the db type pragma (Section 14.4.3, "type"), for example:

#pragma db object
class object
{
 ...

 #pragma db type("TEXT")
 std::array<char, 128> name_;
};

349Revision 2.6, March 2025 C++ Object Persistence with ODB

18.1.1 String Type Mapping

Alternatively, this can be done on the per-type basis, for example:

using name_type = std::array<char, 128>;
#pragma db value(name_type) type("TEXT")

#pragma db object
class object
{
 ...

 name_type name_; // Mapped to TEXT.
};

The char[N], std::array<char, N>, wchar_t[N], and std::array<wchar_t,
N> values may or may not be zero-terminated. When extracting such values from the database,

ODB will append the zero terminator if there is enough space.

18.1.2 Binary Type Mapping

The SQLite ODB runtime library provides support for mapping the std::vector<char>,

std::vector<unsigned char>, char[N], unsigned char[N],

std::array<char, N>, and std::array<unsigned char, N> types to the SQLite

BLOB type. However, these mappings are not enabled by default (in particular, by default,

std::vector and std::array will be treated as containers). To enable the alternative

mappings for these types we need to specify the database type explicitly using the db type
pragma (Section 14.4.3, "type"), for example:

#pragma db object
class object
{
 ...

 #pragma db type("BLOB")
 std::vector<char> buf_;

 #pragma db type("BLOB")
 unsigned char uuid_[16];
};

Alternatively, this can be done on the per-type basis, for example:

Revision 2.6, March 2025350 C++ Object Persistence with ODB

18.1.2 Binary Type Mapping

using buffer = std::vector<char>;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to BLOB.
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and

std::array<char, N> parameters are by default passed as a string rather than a binary. To

pass such parameters as a binary, we need to specify the database type explicitly in the

_val()/_ref() calls. Note also that we don’t need to do this for the integrated queries, for

example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::sqlite::id_blob> (u));
db.query<object> (query::uuid == query::_ref (u));

18.1.3 Incremental BLOB/TEXT I/O

This section describes the SQLite ODB runtime library support for incremental reading and

writing of BLOB and TEXT values. The provided API is a thin wrapper around the native SQLite

sqlite3_blob_*() function family. As a result, it is highly recommended that you familiar­

ize yourself with the semantics of this SQLite functionality before continuing with this section.

The SQLite runtime provides the blob and text types that can be used to represent BLOB and

TEXT data members that will be read/written using the incremental I/O. For example:

#include <odb/sqlite/blob.hxx>
#include <odb/sqlite/text.hxx>

#pragma db object
class object
{
public
 #pragma db id auto
 unsigned long long id;

 odb::sqlite::blob b; // Mapped to BLOB.
 odb::sqlite::text t; // Mapped to TEXT.
};

351Revision 2.6, March 2025 C++ Object Persistence with ODB

18.1.3 Incremental BLOB/TEXT I/O

The blob and text types should be viewed as descriptors of the BLOB and TEXT values

(rather than the values themselves) that can be used to open the values for reading or writing.

These two types have an identical interface that is presented below. Notice that it is essentially

the list of arguments (except for size which is discussed below) to the

sqlite3_blob_open() function:

namespace odb
{
 namespace sqlite
 {
 class blob|text
 {
 public:
 explicit
 blob|text (std::size_t = 0);

 std::size_t size ()
 void size (std::size_t);

 const std::string& db () const;
 const std::string& table () const;
 const std::string& column () const;
 long long rowid () const;

 void
 clear ();
 };
 }
}

To read/write data from/to a incremental BLOB or TEXT value we use the corresponding

blob_stream and text_stream stream types. Their interfaces closely mimic the underlying

sqlite3_blob_*() functions and are presented below. Note that in order to create a stream

we have to pass the corresponding descriptor:

#include <odb/sqlite/stream.hxx>

namespace odb
{
 namespace sqlite
 {
 class stream
 {
 public:
 stream (const char* db,
 const char* table,
 const char* column,
 long long rowid,
 bool rw);

Revision 2.6, March 2025352 C++ Object Persistence with ODB

18.1.3 Incremental BLOB/TEXT I/O

 std::size_t
 size () const;

 // The following two functions throw std::invalid_argument if
 // offset + n is past size().
 //
 void
 read (void* buf, std::size_t n, std::size_t offset = 0);

 void
 write (const void* buf, std::size_t n, std::size_t offset = 0);

 sqlite3_blob*
 handle () const;

 // Close without reporting errors, if any.
 //
 ~stream ();

 // Close with reporting errors, if any.
 //
 void
 close ();

 // Open the same BLOB but in a different row. Can be faster
 // than creating a new stream instance. Note that the stream
 // must be in the open state prior to calling this function.
 //
 void
 reopen (long long rowid);
 };
 }
}

#include <odb/sqlite/blob-stream.hxx>

namespace odb
{
 namespace sqlite
 {
 class blob_stream: public stream
 {
 public:
 blob_stream (const blob&, bool rw);
 };
 }
}

#include <odb/sqlite/text-stream.hxx>

353Revision 2.6, March 2025 C++ Object Persistence with ODB

18.1.3 Incremental BLOB/TEXT I/O

namespace odb
{
 namespace sqlite
 {
 class text_stream: public stream
 {
 public:
 text_stream (const text&, bool rw);
 };
 }
}

The rw argument to the constructors above specifies whether to open the value for reading only

(false) or to read and write (true).

In SQLite the incremental BLOB and TEXT sizes are fixed in the sense that they must be speci­

fied before the object is persisted or updated and the following write operations can only write

that much data. This is what the size data member in the descriptors is for. You can also deter­

mine the size of the opened value, for both reading and writing, using the size() stream func­

tion. The following example puts all of this together:

#include <odb/sqlite/blob-stream.hxx>
#include <odb/sqlite/text-stream.hxx>

string txt (1024 * 1024, ’t’);
vector<char> blb (1024 * 1024, ’b’);

object o;

// Persist.
//
{
 transaction tx (db.begin ());

 // Specify the sizes of the values before calling persist().
 //
 o.t.size (txt.size ());
 o.b.size (blb.size ());

 db.persist (o);

 // Write the data.
 //
 blob_stream bs (o.b, true); // Open for read/write.
 assert (bs.size () == blb.size ());
 bs.write (blb.data (), blb.size ());

 text_stream ts (o.t, true); // Open for read/write.
 assert (ts.size () == txt.size ());
 ts.write (txt.data (), txt.size ());

Revision 2.6, March 2025354 C++ Object Persistence with ODB

18.1.3 Incremental BLOB/TEXT I/O

 tx.commit ();
}

// Load.
//
{
 transaction tx (db.begin ());
 unique_ptr<object> p (db.load<object> (o.id));

 text_stream ts (p->t, false); // Open for reading.
 vector<char> t (ts.size () + 1, ’\0’);
 ts.read (t.data (), t.size () - 1);
 assert (string (t.data ()) == txt);

 blob_stream bs (p->b, false); // Open for reading.
 vector<char> b (bs.size (), ’\0’);
 bs.read (b.data (), b.size ());
 assert (b == blb);

 tx.commit ();
}

// Update
//
txt.resize (txt.size () + 1, ’t’);
txt[0] = ’A’;
txt[txt.size () - 1] = ’Z’;

blb.resize (blb.size () - 1);
blb.front () = ’A’;
blb.back () = ’Z’;

{
 transaction tx (db.begin ());

 // Specify the new sizes of the values before calling update().
 //
 o.t.size (txt.size ());
 o.b.size (blb.size ());

 db.update (o);

 // Write the data.
 //
 blob_stream bs (o.b, true);
 bs.write (blb.data (), blb.size ());

 text_stream ts (o.t, true);

355Revision 2.6, March 2025 C++ Object Persistence with ODB

18.1.3 Incremental BLOB/TEXT I/O

 ts.write (txt.data (), txt.size ());

 tx.commit ();
}

For the most part, the incremental BLOB and TEXT descriptors can be used as any other simple

values. Specifically, they can be used as container elements (Chapter 5, "Containers"), as

NULL-able values (Section 7.3, "Pointers and NULL Value Semantics"), and in views (Chapter

10, "Views"). The following example illustrates the use within a view:

#pragma db view object(object)
struct load_b
{
 odb::sqlite::blob b;
};

using query = odb::query<load_b>;

transaction tx (db.begin ());

for (load_b& lb: db.query<load_b> (query::t == "test"))
{
 blob_stream bs (lb.b, false);
 vector<char> b (bs.size (), ’\0’);
 bs.read (b.data (), b.size ());
}

tx.commit ();

However, being a low-level, SQLite-specific mechanism, the incremental I/O has a number of

nuances that should be kept in mind. Firstly, the streams should be opened within a transaction

and, unless already closed, they will be automatically closed when the transaction is committed or

rolled back. The following modification of the previous example helps to illustrate this point:

{
 transaction tx (db.begin ());

 // ...

 db.persist (o);

 blob_stream bs (o.b, true);

 tx.commit ();

 // ERROR: stream is closed.
 //
 bs.write (blb.data (), blb.size ());
}

Revision 2.6, March 2025356 C++ Object Persistence with ODB

18.1.3 Incremental BLOB/TEXT I/O

// ERROR: not in transaction.
//
text_stream ts (o.t, true);

Because loading an object with an incremental BLOB or TEXT value involves additional actions

after the database function returns (that is, reading the actual data), certain commonly-expected

"round-trip" assumptions will no longer hold unless special steps are taken, for instance (again,

continuing with our example):

transaction tx (db.begin ());

unique_ptr<object> p (db.load<object> (o.id));
p->name = "foo"; // Update some other member.
db.update (*p); // Bad behavior: incremental BLOB/TEXT invalidated.

tx.commit ();

One way to restore the expected behavior is to place the incremental BLOB and TEXT values into

their own, separately loaded/updated sections (Chapter 9, "Sections"). The alternative approach

would be to perform the incremental I/O as part of the database operation post_* callbacks

(Section 14.1.7, "callback").

Finally, note that when using incremental TEXT values, the data that we read/write is the raw

bytes in the encoding used by the database (UTF-8 by default; see SQLite PRAGMA encoding

documentation for details).

18.1.4 Mixed Automatic/Manual Object Id Assignment

In SQLite an automatic object id can also be assigned manually. For example:

 #pragma db id auto
 odb::nullable<int64_t> id;

Then set the id member to NULL to get auto-assignment or to the actual value to use a manual id.

This functionality is normally used to reserve a special id, typically 0, for a special object.

18.2 SQLite Database Class

The SQLite database class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class database: public odb::database
 {

357Revision 2.6, March 2025 C++ Object Persistence with ODB

18.2 SQLite Database Class

 public:
 database (const std::string& name,
 int flags = SQLITE_OPEN_READWRITE,
 bool foreign_keys = true,
 const std::string& vfs = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

#ifdef _WIN32
 database (const std::wstring& name,
 int flags = SQLITE_OPEN_READWRITE,
 bool foreign_keys = true,
 const std::string& vfs = "",
 std::[auto|unique]_ptr<connection_factory> = 0);
#endif

 database (int& argc,
 char* argv[],
 bool erase = false,
 int flags = SQLITE_OPEN_READWRITE,
 bool foreign_keys = true,
 const std::string& vfs = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const std::string&
 name () const;

 int
 flags () const;

 public:
 transaction
 begin_immediate ();

 transaction
 begin_exclusive ();

 public:
 connection_ptr
 connection ();
 };
 }
}

You will need to include the <odb/sqlite/database.hxx> header file to make this class

available in your application.

Revision 2.6, March 2025358 C++ Object Persistence with ODB

18.2 SQLite Database Class

The first constructor opens the specified SQLite database. The name argument is the database

file name to open in the UTF-8 encoding. If this argument is empty, then a temporary, on-disk

database is created. If this argument is the :memory: special value, then a temporary,

in-memory database is created. The flags argument allows us to specify SQLite opening flags.

For more information on the possible values, refer to the sqlite3_open_v2() function

description in the SQLite C API documentation. The foreign_keys argument specifies

whether foreign key constraints checking should be enabled. See Section 18.6.3, "Foreign Key

Constraints" for more information on foreign keys. The vfs argument specifies the SQLite

virtual file system module that should be used to access the database. If this argument is empty,

then the default vfs module is used. Again, refer to the sqlite3_open_v2() function docu­

mentation for detail.

The following example shows how we can open the test.db database in the read-write mode

and create it if it does not exist:

unique_ptr<odb::database> db (
 new odb::sqlite::database (
 "test.db",
 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE));

The second constructor is the same as the first except that the database name is passes as

std::wstring in the UTF-16 encoding. This constructor is only available when compiling for

Windows.

The third constructor extracts the database parameters from the command line. The following

options are recognized:

 --database <name>
 --create
 --read-only
 --options-file <file>

By default, this constructor opens the database in the read-write mode (SQLITE_OPEN_READ­
WRITE flag). If the --create flag is specified, then the database file is created if it does not

already exist (SQLITE_OPEN_CREATE flag). If the --read-only flag is specified, then the

database is opened in the read-only mode (SQLITE_OPEN_READONLY flag instead of

SQLITE_OPEN_READWRITE). The --options-file option allows us to specify some or

all of the database options in a file with each option appearing on a separate line followed by a

space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the

argv array and the argc count is updated accordingly. This is primarily useful if your applica­

tion accepts other options or arguments and you would like to get the SQLite options out of the

argv array.

359Revision 2.6, March 2025 C++ Object Persistence with ODB

18.2 SQLite Database Class

The flags argument has the same semantics as in the first constructor. Flags from the command

line always override the corresponding values specified with this argument.

The third constructor throws the odb::sqlite::cli_exception exception if the SQLite

option values are missing or invalid. See Section 18.5, "SQLite Exceptions" for more information

on this exception.

The static print_usage() function prints the list of options with short descriptions that are

recognized by the third constructor.

The last argument to all of the constructors is a pointer to the connection factory. In C++98/03, it

is std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a

non-NULL value, the database instance assumes ownership of the factory instance. The connec­

tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the

database instance.

The begin_immediate() and begin_exclusive() functions are the SQLite-specific

extensions to the standard odb::database::begin() function (see Section 3.5, "Transac­

tions"). They allow us to start an immediate (BEGIN IMMEDIATE) and an exclusive (BEGIN
EXCLUSIVE) SQLite transaction, respectively. For more information on the semantics of the

immediate and exclusive transactions, refer to the BEGIN statement description in the SQLite

documentation.

The connection() function returns a pointer to the SQLite database connection encapsulated

by the odb::sqlite::connection class. For more information on sqlite::connec­
tion, refer to Section 18.3, "SQLite Connection and Connection Factory".

18.3 SQLite Connection and Connection Factory

The sqlite::connection class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class connection: public odb::connection
 {
 public:
 connection (database&, int extra_flags = 0);
 connection (database&, sqlite3*);

 transaction
 begin_immediate ();

Revision 2.6, March 2025360 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

 transaction
 begin_exclusive ();

 sqlite3*
 handle ();
 };

 using connection_ptr = details::shared_ptr<connection>;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connections".

The first overloaded sqlite::connection constructor opens a new SQLite connection. The

extra_flags argument can be used to specify extra sqlite3_open_v2() flags that are

combined with the flags specified in the sqlite::database constructor. The second

constructor allows us to create a connection instance by providing an already open native

SQLite handle. Note that the connection instance assumes ownership of this handle.

The begin_immediate() and begin_exclusive() functions allow us to start an imme­

diate and an exclusive SQLite transaction on the connection, respectively. Their semantics are

equivalent to the corresponding functions defined in the sqlite::database class (Section

18.2, "SQLite Database Class"). The handle() accessor returns the SQLite handle correspond­

ing to the connection.

The sqlite::connection_factory abstract class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database

instance. This happens in the odb::sqlite::database class constructors. The

connect() function is called whenever a database connection is requested.

361Revision 2.6, March 2025 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

The four implementations of the connection_factory interface provided by the SQLite

ODB runtime library are serial_connection_factory, single_connec­
tion_factory, new_connection_factory, and connection_pool_factory. You

will need to include the <odb/sqlite/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli­

cation.

The serial_connection_factory class creates a single connection that is expected to be

used by an application in a serialized manner. For example, a single-threaded application that

executes all the database operations via the database instance and without dealing with multiple

connections/transactions would qualify. The serial_connection_factory class has the

following interface:

namespace odb
{
 namespace sqlite
 {
 class serial_connection_factory: public connection_factory
 {
 public:
 serial_connection_factory ();

 protected:
 virtual connection_ptr
 create ();
 };
};

The create() virtual function is called when the factory needs to create the connection. By

deriving from the serial_connection_factory class and overriding this function we can

implement custom connection establishment and configuration.

The single_connection_factory class creates a single connection that is shared between

all the threads in an application. If the connection is currently not in use, then it is returned to the

caller. Otherwise, the caller is blocked until the connection becomes available. The

single_connection_factory class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class single_connection_factory: public connection_factory
 {
 public:
 single_connection_factory ();

 protected:
 class single_connection: public connection

Revision 2.6, March 2025362 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

 {
 public:
 single_connection (database&, int extra_flags = 0);
 single_connection (database&, sqlite3*);
 };

 using single_connection_ptr = details::shared_ptr<single_connection>;

 virtual single_connection_ptr
 create ();
 };
};

The create() virtual function is called when the factory needs to create the connection. By

deriving from the single_connection_factory class and overriding this function we can

implement custom connection establishment and configuration.

The new_connection_factory class creates a new connection whenever one is requested.

When a connection is no longer needed, it is released and closed. The new_connec­
tion_factory class has the following interface:

namespace odb
{
 namespace sqlite
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the following

interface:

namespace odb
{
 namespace sqlite
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&, int extra_flags = 0);

363Revision 2.6, March 2025 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

 pooled_connection (database_type&, sqlite3*);
 };

 using pooled_connection_ptr = details::shared_ptr<pooled_connection>;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor speci­

fies the maximum number of concurrent connections that this pool factory will maintain. Simi­

larly, the min_connections argument specifies the minimum number of available connec­

tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection

that can be returned. If there is none, the pool factory checks the max_connections value to

see if a new connection can be created. If the total number of connections maintained by the pool

is less than this value, then a new connection is created and returned. Otherwise, the caller is

blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting

for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the

pool factory checks whether the total number of connections maintained by the pool is greater

than the min_connections value. If that’s the case, the connection is closed. Otherwise, the

connection is added to the pool of available connections to be returned on the next request. In

other words, if the number of connections maintained by the pool exceeds min_connections
and there are no callers waiting for a new connection, then the pool will close the excess connec­

tions.

If the max_connections value is 0, then the pool will create a new connection whenever all

of the existing connections are in use. If the min_connections value is 0, then the pool will

never close a connection and instead maintain all the connections that were ever created.

The create() virtual function is called whenever the pool needs to create a new connection.

By deriving from the connection_pool_factory class and overriding this function we can

implement custom connection establishment and configuration.

By default, connections created by new_connection_factory and connec­
tion_pool_factory enable the SQLite shared cache mode and use the unlock notify func­

tionality to aid concurrency. To disable the shared cache mode you can pass the

SQLITE_OPEN_PRIVATECACHE flag when creating the database instance. For more informa­

tion on the shared cache mode refer to the SQLite documentation.

Revision 2.6, March 2025364 C++ Object Persistence with ODB

18.3 SQLite Connection and Connection Factory

If you pass NULL as the connection factory to one of the database constructors, then the

connection_pool_factory instance will be created by default with the min and max

connections values set to 0. The following code fragment shows how we can pass our own

connection factory instance:

#include <odb/database.hxx>

#include <odb/sqlite/database.hxx>
#include <odb/sqlite/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 unique_ptr<odb::sqlite::connection_factory> f (
 new odb::sqlite::connection_pool_factory (20));

 unique_ptr<odb::database> db (
 new sqlite::database (argc, argv, false, SQLITE_OPEN_READWRITE, f));
}

18.4 Attached SQLite Databases

The SQLite database class provides support for attaching additional databases to the main

database connections using the SQLite ATTACH DATABASE statement. Good understanding of

the SQLite attached database semantics and ODB connection management is strongly recom­

mended when using this functionality.

The relevant part of the SQLite database class interface is shown below:

namespace odb
{
 namespace sqlite
 {
 class database: public odb::database
 {
 public:

 ...

 database (const connection_ptr&,
 const std::string& name,
 const std::string& schema,
 std::[auto|unique]_ptr<attached_connection_factory> = 0);

 void
 detach ();

 database&
 main_database ();

365Revision 2.6, March 2025 C++ Object Persistence with ODB

18.4 Attached SQLite Databases

 const std::string&
 schema () const;
 };
 }
}

The shown constructor attaches to the specified connection a database with the specified name as

the specified schema.

The resulting database instance is referred to as an attached database and the connection it

returns as an attached connection (which is just a proxy for the main connection). Database oper­

ations executed on the attached database or attached connection are automatically translated to

refer to the specified schema rather than "main". For uniformity attached databases can also be

created for the pre-attached "main" and "temp" schemas (in this case the name argument can

be anything).

The automatic translation of the statements relies on their text having references to top-level

database entities (tables, indexes, etc) qualified with the "main" schema. To achieve this,

compile your headers with the --schema main option and, if using schema migration, with

the --schema-version-table main.schema_version option. You must also not use

"main" as an object/table alias in views of native statements. For optimal translation perfor­

mance use 4-character schema names.

The main connection and attached to it databases and connections are all meant to be used within

the same thread. In particular, the attached database holds a counted reference to the main

connection which means the connection will not be released until all the attached to this connec­

tion databases are destroyed.

Note that in this model the attached databases are attached to the main connection, not to the

(main) database, which mimics the underlying semantics of SQLite. An alternative model would

have been to notionally attach the databases to the main database and under the hood automati­

cally attach them to each returned connection. While this may seem like a more convenient model

in some cases, it is also less flexible: the current model allows attaching a different set of

databases to different connections, attaching them on demand as the transaction progresses, etc.

Also, the more convenient model can be implemented on top of this model by deriving an appli­

cation-specific database class and/or providing custom connection factories.

Note also that unless the name is a URI with appropriate mode, the attached database is opened

with the SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE flags. In particular, if you

want just SQLITE_OPEN_READWRITE, then you will need to verify the database file existence

manually prior to calling this constructor.

Revision 2.6, March 2025366 C++ Object Persistence with ODB

18.4 Attached SQLite Databases

Note that attaching/detaching databases within a transaction is only supported since SQLite

3.21.0.

The detach() function detaches the attached database. The database is automatically detached

on destruction but a failure to detach is ignored. To detect such a failure perform explicit detach.

For uniformity detaching a main database is a no-op.

The main_database() function returns the main database of an attached database. If this

database is main, return itself.

The schema() function returns the schema name under which this database was attached or

empty if this is the main database.

18.5 SQLite Exceptions

The SQLite ODB runtime library defines the following SQLite-specific exceptions:

namespace odb
{
 namespace sqlite
 {
 class forced_rollback: odb::recoverable
 {
 public:
 virtual const char*
 what () const throw ();
 };

 class database_exception: odb::database_exception
 {
 public:
 int
 error () const

 int
 extended_error () const;

 const std::string&
 message () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*

367Revision 2.6, March 2025 C++ Object Persistence with ODB

18.5 SQLite Exceptions

 what () const throw ();
 };
 }
}

You will need to include the <odb/sqlite/exceptions.hxx> header file to make these

exceptions available in your application.

The odb::sqlite::forced_rollback exception is thrown if SQLite is forcing the

current transaction to roll back. For more information on this behavior refer to Section 18.6.6,

"Forced Rollback".

The odb::sqlite::database_exception is thrown if an SQLite database operation

fails. The SQLite-specific error information is accessible via the error(),

extended_error(), and message() functions. All this information is also combined and

returned in a human-readable form by the what() function.

The odb::sqlite::cli_exception is thrown by the command line parsing constructor of

the odb::sqlite::database class if the SQLite option values are missing or invalid. The

what() function returns a human-readable description of an error.

18.6 SQLite Limitations

The following sections describe SQLite-specific limitations imposed by the current SQLite and

ODB runtime versions.

18.6.1 Query Result Caching

SQLite ODB runtime implementation does not perform query result caching (Section 4.4, "Query

Result") even when explicitly requested. The SQLite API supports interleaving execution of

multiple prepared statements on a single connection. As a result, with SQLite, it is possible to

have multiple uncached results and calls to other database functions do not invalidate them. The

only limitation of the uncached SQLite results is the unavailability of the result::size()

function. If you call this function on an SQLite query result, then the

odb::result_not_cached exception (Section 3.14, "ODB Exceptions") is always thrown.

Future versions of the SQLite ODB runtime library may add support for result caching.

18.6.2 Automatic Assignment of Object Ids

Due to SQLite API limitations, every automatically assigned object id (Section 14.4.2, "auto")

should have the INTEGER SQLite type. While SQLite will treat other integer type names (such

as INT, BIGINT, etc.) as INTEGER, automatic id assignment will not work. By default, ODB

maps all C++ integral types to INTEGER. This means that the only situation that requires consid­

eration is the assignment of a custom database type using the db type pragma (Section 14.4.3,

Revision 2.6, March 2025368 C++ Object Persistence with ODB

18.6 SQLite Limitations

"type"). For example:

#pragma db object
class person
{
 ...

 //#pragma db id auto type("INT") // Will not work.
 //#pragma db id auto type("INTEGER") // Ok.
 #pragma db id auto // Ok, Mapped to INTEGER.
 unsigned int id_;
};

18.6.3 Foreign Key Constraints

By default the SQLite ODB runtime enables foreign key constraints checking (PRAGMA
foreign_keys=ON). You can disable foreign keys by passing false as the

foreign_keys argument to one of the odb::sqlite::database constructors. Foreign

keys will also be disabled if the SQLite library is built without support for foreign keys

(SQLITE_OMIT_FOREIGN_KEY and SQLITE_OMIT_TRIGGER macros) or if you are using

an SQLite version prior to 3.6.19, which does not support foreign key constraints checking.

If foreign key constraints checking is disabled or not available, then inconsistencies in object rela­

tionships will not be detected. Furthermore, using the erase_query() function (Section 3.11,

"Deleting Persistent Objects") to delete persistent objects that contain containers will not work

correctly. Container data for such objects will not be deleted.

When foreign key constraints checking is enabled, then you may get the "foreign key constraint

failed" error while re-creating the database schema. This error is due to bugs in the SQLite DDL

foreign keys support. The recommended work-around for this problem is to temporarily disable

foreign key constraints checking while re-creating the schema. The following code fragment

shows how this can be done:

#include <odb/connection.hxx>
#include <odb/transaction.hxx>
#include <odb/schema-catalog.hxx>

odb::database& db = ...

{
 odb::connection_ptr c (db.connection ());

 c->execute ("PRAGMA foreign_keys=OFF");

 odb::transaction t (c->begin ());
 odb::schema_catalog::create_schema (db);

369Revision 2.6, March 2025 C++ Object Persistence with ODB

18.6.3 Foreign Key Constraints

 t.commit ();

 c->execute ("PRAGMA foreign_keys=ON");
}

Finally, ODB assumes the standard SQL behavior which requires that foreign key constraints

checking is deferred until the transaction is committed. Default SQLite behavior is to check such

constraints immediately. As a result, when used with ODB, a custom database schema that

defines foreign key constraints may need to declare such constraints as DEFERRABLE
INITIALLY DEFERRED, as shown in the following example. By default, schemas generated by

the ODB compiler meet this requirement automatically.

CREATE TABLE Employee (
 ...
 employer INTEGER REFERENCES Employer(id)
 DEFERRABLE INITIALLY DEFERRED);

You can override the default behavior and instruct the ODB compiler to generate non-deferrable

foreign keys by specifying the --fkeys-deferrable-mode not_deferrable ODB

compiler option. Note, however, that in this case the order in which you persist, update, and erase

objects within a transaction becomes important.

18.6.4 Constraint Violations

Due to the granularity of the SQLite error codes, it is impossible to distinguish between the dupli­

cate primary key and other constraint violations. As a result, when making an object persistent,

the SQLite ODB runtime will translate all constraint violation errors to the

object_already_persistent exception (Section 3.14, "ODB Exceptions").

18.6.5 Sharing of Queries

As discussed in Section 4.3, "Executing a Query", a query instance that does not have any

by-reference parameters is immutable and can be shared between multiple threads without

synchronization. Currently, the SQLite ODB runtime does not support this functionality. Future

versions of the library will remove this limitation.

18.6.6 Forced Rollback

In SQLite 3.7.11 or later, if one of the connections participating in the shared cache rolls back a

transaction, then ongoing transactions on other connections in the shared cache may also be

forced to roll back. An example of such behavior would be a read-only transaction that is forced

to roll back while iterating over the query result because another transaction on another connec­

tion was rolled back.

Revision 2.6, March 2025370 C++ Object Persistence with ODB

18.6.4 Constraint Violations

If a transaction is being forced to roll back by SQLite, then ODB throws

odb::sqlite::forced_rollback (Section 18.5, "SQLite Exceptions") which is a recov­

erable exception (3.7 Error Handling and Recovery). As a result, the recommended way to handle

this exception is to re-execute the affected transaction.

18.6.7 Database Schema Evolution

From the list of schema migration changes supported by ODB (Section 13.2, "Schema Migra­

tion"), the following are not supported by SQLite:

drop column

alter column, set NULL/NOT NULL

add foreign key

drop foreign key

The biggest problem is the lack of support for dropping columns. This means that it would be

impossible to delete a data member in a persistent class. To work around this limitation ODB

implements logical delete for columns that allow NULL values. In this case, instead of dropping

the column (in the post-migration stage), the schema migration statements will automatically

reset this column in all the existing rows to NULL. Any new rows that are inserted later will also

automatically have this column set to NULL (unless the column specifies a default value).

Since it is also impossible to change the column’s NULL/NOT NULL attribute after it has been

added, to make schema evolution support usable in SQLite, all the columns should be added as

NULL even if semantically they should not allow NULL values. We should also normally refrain

from assigning default values to columns (Section 14.4.7, default), unless the space overhead

of a default value is not a concern. Explicitly making all the data members NULL would be

burdensome and ODB provides the --sqlite-override-null command line option that

forces all the columns, even those that were explicitly marked NOT NULL, to be NULL in

SQLite.

SQLite only supports adding foreign keys as part of the column addition. As a result, we can only

add a new data member of an object pointer type if it points to an object with a simple

(single-column) object id.

SQLite also doesn’t support dropping foreign keys. Leaving a foreign key around works well

with logical delete unless we also want to delete the pointed-to object. In this case we will have to

leave an empty table corresponding to the pointed-to object around. An alternative would be to

make a copy of the pointing object without the object pointer, migrate the data, and then delete

both the old pointing and the pointed-to objects. Since this will result in dropping the pointing

table, the foreign key will be dropped as well. Yet another, more radical, solution to this problem

is to disable foreign keys checking altogether (see the foreign_keys SQLite pragma).

371Revision 2.6, March 2025 C++ Object Persistence with ODB

18.6.7 Database Schema Evolution

To summarize, to make schema evolution support usable in SQLite we should pass the

--sqlite-override-null option when compiling our persistent classes and also refrain

from assigning default values to data members. Note also that this has to be done from the start so

that every column is added as NULL and therefore can be logically deleted later. In particular, you

cannot add the --sqlite-override-null option when you realize you need to delete a

data member. At this point it is too late since the column has already been added as NOT NULL
in existing databases. We should also avoid composite object ids if we are planning to use object

relationships.

18.7 SQLite Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define an SQLite

index, the type clause specifies the index type (for example, UNIQUE) while the method and

options clauses are not used. The column options can be used to specify collations and the sort

order. For example:

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index member(name_, "COLLATE binary DESC")
};

Index names in SQLite are database-global. To avoid name clashes, ODB automatically prefixes

each index name with the table name on which it is defined.

Revision 2.6, March 2025372 C++ Object Persistence with ODB

18.7 SQLite Index Definitions

19 PostgreSQL Database

To generate support code for the PostgreSQL database you will need to pass the

"--database pgsql" (or "-d pgsql") option to the ODB compiler. Your application will

also need to link to the PostgreSQL ODB runtime library (libodb-pgsql). All Post­

greSQL-specific ODB classes are defined in the odb::pgsql namespace.

ODB utilizes prepared statements extensively. Support for prepared statements was added in

PostgreSQL version 7.4 with the introduction of the messaging protocol version 3.0. For this

reason, ODB supports only PostgreSQL version 7.4 and later.

19.1 PostgreSQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and Post­

greSQL database types. This mapping can be customized on the per-type and per-member basis

using the ODB Pragma Language (Chapter 14, "ODB Pragma Language").

373Revision 2.6, March 2025 C++ Object Persistence with ODB

19 PostgreSQL Database

C++ Type PostgreSQL Type Default NULL Semantics

bool BOOLEAN NOT NULL

char CHAR(1) NOT NULL

signed char SMALLINT NOT NULL

unsigned char SMALLINT NOT NULL

short SMALLINT NOT NULL

unsigned short SMALLINT NOT NULL

int INTEGER NOT NULL

unsigned int INTEGER NOT NULL

long BIGINT NOT NULL

unsigned long BIGINT NOT NULL

long long BIGINT NOT NULL

unsigned long long BIGINT NOT NULL

float REAL NOT NULL

double DOUBLE PRECISION NOT NULL

std::string TEXT NOT NULL

char[N] VARCHAR(N-1) NOT NULL

It is possible to map the char C++ type to an integer database type (for example, SMALLINT)

using the db type pragma (Section 14.4.3, "type").

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to the

PostgreSQL types corresponding to their underlying integral types (see table above). The default

NULL semantics is NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1,
 sweet,
 sour = 4,
 salty
};

#pragma db object

Revision 2.6, March 2025374 C++ Object Persistence with ODB

19.1 PostgreSQL Type Mapping

class object
{
 ...

 color color_; // Automatically mapped to INTEGER.
 taste taste_; // Automatically mapped to SMALLINT.
};

Note also that because PostgreSQL does not support unsigned integers, the unsigned short,

unsigned int, and unsigned long/unsigned long long C++ types are by default

mapped to the SMALLINT, INTEGER, and BIGINT PostgreSQL types, respectively. The sign

bit of the value stored by the database for these types will contain the most significant bit of the

actual unsigned value being persisted.

It is also possible to add support for additional PostgreSQL types, such as NUMERIC, geometry

types, XML, JSON, enumeration types, composite types, arrays, geospatial types, and the

key-value store (HSTORE). For more information, refer to Section 14.8, "Database Type Mapping

Pragmas".

19.1.1 String Type Mapping

The PostgreSQL ODB runtime library provides support for mapping the std::string,

char[N], and std::array<char, N> types to the PostgreSQL CHAR, VARCHAR, and

TEXT types. However, these mappings are not enabled by default (in particular, by default,

std::array will be treated as a container). To enable the alternative mappings for these types

we need to specify the database type explicitly using the db type pragma (Section 14.4.3,

"type"), for example:

#pragma db object
class object
{
 ...

 #pragma db type("CHAR(2)")
 char state_[2];

 #pragma db type("VARCHAR(128)")
 std::string name_;
};

Alternatively, this can be done on the per-type basis, for example:

375Revision 2.6, March 2025 C++ Object Persistence with ODB

19.1.1 String Type Mapping

#pragma db value(std::string) type("VARCHAR(128)")

#pragma db object
class object
{
 ...

 std::string name_; // Mapped to VARCHAR(128).
};

The char[N] and std::array<char, N> values may or may not be zero-terminated.

When extracting such values from the database, ODB will append the zero terminator if there is

enough space.

19.1.2 Binary Type and UUID Mapping

The PostgreSQL ODB runtime library provides support for mapping the

std::vector<char>, std::vector<unsigned char>, char[N],

unsigned char[N], std::array<char, N>, and std::array<unsigned char,
N> types to the PostgreSQL BYTEA type. There is also support for mapping the char[16]
array to the PostgreSQL UUID type. However, these mappings are not enabled by default (in

particular, by default, std::vector and std::array will be treated as containers). To

enable the alternative mappings for these types we need to specify the database type explicitly

using the db type pragma (Section 14.4.3, "type"), for example:

#pragma db object
class object
{
 ...

 #pragma db type("UUID")
 char uuid_[16];

 #pragma db type("BYTEA")
 std::vector<char> buf_;

 #pragma db type("BYTEA")
 unsigned char data_[256];
};

Alternatively, this can be done on the per-type basis, for example:

Revision 2.6, March 2025376 C++ Object Persistence with ODB

19.1.2 Binary Type and UUID Mapping

using buffer = std::vector<char>;
#pragma db value(buffer) type("BYTEA")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to BYTEA.
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and

std::array<char, N> parameters are by default passed as a string rather than a binary. To

pass such parameters as a binary, we need to specify the database type explicitly in the

_val()/_ref() calls. Note also that we don’t need to do this for the integrated queries, for

example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::pgsql::id_uuid> (u));
db.query<object> ("buf = " + query::_val<odb::pgsql::id_bytea> (u));
db.query<object> (query::uuid == query::_ref (u));

19.2 PostgreSQL Database Class

The PostgreSQL database class has the following interface:

namespace odb
{
 namespace pgsql
 {
 class database: public odb::database
 {
 public:
 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 const std::string& host = "",
 unsigned int port = 0,
 const std::string& extra_conninfo = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 const std::string& host,
 const std::string& socket_ext,
 const std::string& extra_conninfo = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

377Revision 2.6, March 2025 C++ Object Persistence with ODB

19.2 PostgreSQL Database Class

 database (const std::string& conninfo,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (int& argc,
 char* argv[],
 bool erase = false,
 const std::string& extra_conninfo = "",
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const std::string&
 user () const;

 const std::string&
 password () const;

 const std::string&
 db () const;

 const std::string&
 host () const;

 unsigned int
 port () const;

 const std::string&
 socket_ext () const;

 const std::string&
 extra_conninfo () const;

 const std::string&
 conninfo () const;

 public:
 connection_ptr
 connection ();
 };
 }
}

You will need to include the <odb/pgsql/database.hxx> header file to make this class

available in your application.

Revision 2.6, March 2025378 C++ Object Persistence with ODB

19.2 PostgreSQL Database Class

The overloaded database constructors allow us to specify the PostgreSQL database parameters

that should be used when connecting to the database. The port argument in the first constructor

is an integer value specifying the TCP/IP port number to connect to. A zero port number indicates

that the default port should be used. The socket_ext argument in the second constructor is a

string value specifying the UNIX-domain socket file name extension.

The third constructor allows us to specify all the database parameters as a single conninfo
string. All other constructors accept additional database connection parameters as the

extra_conninfo argument. For more information about the format of the conninfo string,

refer to the PQconnectdb() function description in the PostgreSQL documentation. In the

case of extra_conninfo, all the database parameters provided in this string will take prece­

dence over those explicitly specified with other constructor arguments.

The last constructor extracts the database parameters from the command line. The following

options are recognized:

 --user <login> | --username <login>
 --password <password>
 --database <name> | --dbname <name>
 --host <host>
 --port <integer>
 --options-file <file>

The --options-file option allows us to specify some or all of the database options in a file

with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the

argv array and the argc count is updated accordingly. This is primarily useful if your applica­

tion accepts other options or arguments and you would like to get the PostgreSQL options out of

the argv array.

This constructor throws the odb::pgsql::cli_exception exception if the PostgreSQL

option values are missing or invalid. See section Section 19.4, "PostgreSQL Exceptions" for more

information on this exception.

The static print_usage() function prints the list of options with short descriptions that are

recognized by this constructor.

The last argument to all of the constructors is a pointer to the connection factory. In C++98/03, it

is std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a

non-NULL value, the database instance assumes ownership of the factory instance. The connec­

tion factory interface as well as the available implementations are described in the next section.

379Revision 2.6, March 2025 C++ Object Persistence with ODB

19.2 PostgreSQL Database Class

The set of accessor functions following the constructors allows us to query the parameters of the

database instance. Note that the conninfo() accessor returns a complete conninfo string

which includes parameters that were explicitly specified with the various constructor arguments,

as well as the extra parameters passed in the extra_conninfo argument. The

extra_conninfo() accessor will return the conninfo string as passed in the

extra_conninfo argument.

The connection() function returns a pointer to the PostgreSQL database connection encapsu­

lated by the odb::pgsql::connection class. For more information on

pgsql::connection, refer to Section 19.3, "PostgreSQL Connection and Connection

Factory".

19.3 PostgreSQL Connection and Connection Factory

The pgsql::connection class has the following interface:

namespace odb
{
 namespace pgsql
 {
 class connection: public odb::connection
 {
 public:
 connection (database&);
 connection (database&, PGconn*);

 PGconn*
 handle ();
 };

 using connection_ptr = details::shared_ptr<connection>;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connections".

The first overloaded pgsql::connection constructor establishes a new PostgreSQL connec­

tion. The second constructor allows us to create a connection instance by providing an

already connected native PostgreSQL handle. Note that the connection instance assumes

ownership of this handle. The handle() accessor returns the PostgreSQL handle corresponding

to the connection.

The pgsql::connection_factory abstract class has the following interface:

namespace odb
{
 namespace pgsql
 {

Revision 2.6, March 2025380 C++ Object Persistence with ODB

19.3 PostgreSQL Connection and Connection Factory

 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database

instance. This happens in the odb::pgsql::database class constructors. The connect()

function is called whenever a database connection is requested.

The two implementations of the connection_factory interface provided by the PostgreSQL

ODB runtime are new_connection_factory and connection_pool_factory. You

will need to include the <odb/pgsql/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli­

cation.

The new_connection_factory class creates a new connection whenever one is requested.

When a connection is no longer needed, it is released and closed. The new_connec­
tion_factory class has the following interface:

namespace odb
{
 namespace pgsql
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the following

interface:

namespace odb
{
 namespace pgsql
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0);

381Revision 2.6, March 2025 C++ Object Persistence with ODB

19.3 PostgreSQL Connection and Connection Factory

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&);
 pooled_connection (database_type&, PGconn*);
 };

 using pooled_connection_ptr = details::shared_ptr<pooled_connection>;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor speci­

fies the maximum number of concurrent connections that this pool factory will maintain. Simi­

larly, the min_connections argument specifies the minimum number of available connec­

tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection

that can be returned. If there is none, the pool factory checks the max_connections value to

see if a new connection can be created. If the total number of connections maintained by the pool

is less than this value, then a new connection is created and returned. Otherwise, the caller is

blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting

for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the

pool factory checks whether the total number of connections maintained by the pool is greater

than the min_connections value. If that’s the case, the connection is closed. Otherwise, the

connection is added to the pool of available connections to be returned on the next request. In

other words, if the number of connections maintained by the pool exceeds min_connections
and there are no callers waiting for a new connection, the pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever all

of the existing connections are in use. If the min_connections value is 0, then the pool will

never close a connection and instead maintain all the connections that were ever created.

The create() virtual function is called whenever the pool needs to create a new connection.

By deriving from the connection_pool_factory class and overriding this function we can

implement custom connection establishment and configuration.

If you pass NULL as the connection factory to one of the database constructors, then the

connection_pool_factory instance will be created by default with the min and max

connections values set to 0. The following code fragment shows how we can pass our own

Revision 2.6, March 2025382 C++ Object Persistence with ODB

19.3 PostgreSQL Connection and Connection Factory

connection factory instance:

#include <odb/database.hxx>

#include <odb/pgsql/database.hxx>
#include <odb/pgsql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 unique_ptr<odb::pgsql::connection_factory> f (
 new odb::pgsql::connection_pool_factory (20));

 unique_ptr<odb::database> db (
 new pgsql::database (argc, argv, false, "", f));
}

19.4 PostgreSQL Exceptions

The PostgreSQL ODB runtime library defines the following PostgreSQL-specific exceptions:

namespace odb
{
 namespace pgsql
 {
 class database_exception: odb::database_exception
 {
 public:
 const std::string&
 message () const;

 const std::string&
 sqlstate () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };
 }
}

383Revision 2.6, March 2025 C++ Object Persistence with ODB

19.4 PostgreSQL Exceptions

You will need to include the <odb/pgsql/exceptions.hxx> header file to make these

exceptions available in your application.

The odb::pgsql::database_exception is thrown if a PostgreSQL database operation

fails. The PostgreSQL-specific error information is accessible via the message() and

sqlstate() functions. All this information is also combined and returned in a human-readable

form by the what() function.

The odb::pgsql::cli_exception is thrown by the command line parsing constructor of

the odb::pgsql::database class if the PostgreSQL option values are missing or invalid.

The what() function returns a human-readable description of an error.

19.5 PostgreSQL Limitations

The following sections describe PostgreSQL-specific limitations imposed by the current Post­

greSQL and ODB runtime versions.

19.5.1 Query Result Caching

The PostgreSQL ODB runtime implementation will always return a cached query result (Section

4.4, "Query Result") even when explicitly requested not to. This is a limitation of the PostgreSQL

client library (libpq) which does not support uncached (streaming) query results.

19.5.2 Foreign Key Constraints

ODB assumes the standard SQL behavior which requires that foreign key constraints checking is

deferred until the transaction is committed. Default PostgreSQL behavior is to check such

constraints immediately. As a result, when used with ODB, a custom database schema that

defines foreign key constraints may need to declare such constraints as INITIALLY
DEFERRED, as shown in the following example. By default, schemas generated by the ODB

compiler meet this requirement automatically.

CREATE TABLE Employee (
 ...
 employer BIGINT REFERENCES Employer(id) INITIALLY DEFERRED);

You can override the default behavior and instruct the ODB compiler to generate non-deferrable

foreign keys by specifying the --fkeys-deferrable-mode not_deferrable ODB

compiler option. Note, however, that in this case the order in which you persist, update, and erase

objects within a transaction becomes important.

Revision 2.6, March 2025384 C++ Object Persistence with ODB

19.5 PostgreSQL Limitations

19.5.3 Unique Constraint Violations

Due to the granularity of the PostgreSQL error codes, it is impossible to distinguish between the

duplicate primary key and other unique constraint violations. As a result, when making an object

persistent, the PostgreSQL ODB runtime will translate all unique constraint violation errors to the

object_already_persistent exception (Section 3.14, "ODB Exceptions").

19.5.4 Date-Time Format

ODB expects the PostgreSQL server to use integers as a binary format for the date-time types,

which is the default for most PostgreSQL configurations. When creating a connection, ODB

examines the integer_datetimes PostgreSQL server parameter and if it is false,

odb::pgsql::database_exception is thrown. You may check the value of this parame­

ter for your server by executing the following SQL query:

SHOW integer_datetimes

19.5.5 Timezones

ODB does not currently natively support the PostgreSQL date-time types with timezone informa­

tion. However, these types can be accessed by mapping them to one of the natively supported

types, as discussed in Section 14.8, "Database Type Mapping Pragmas".

19.5.6 NUMERIC Type Support

Support for the PostgreSQL NUMERIC type is limited to providing a binary buffer containing the

binary representation of the value. For more information on the binary format used to store

NUMERIC values refer to the PostgreSQL documentation. An alternative approach to accessing

NUMERIC values is to map this type to one of the natively supported ones, as discussed in

Section 14.8, "Database Type Mapping Pragmas".

19.5.7 Bulk Operations Support

Support for bulk operations (Section 15.3, "Bulk Database Operations") requires PostgreSQL

client library (libpq) version 14 or later and PostgreSQL server version 7.4 or later.

19.6 PostgreSQL Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define a Post­

greSQL index, the type clause specifies the index type (for example, UNIQUE), the method
clause specifies the index method (for example, BTREE, HASH, GIN, etc.), and the options
clause specifies additional index options, such as storage parameters, table spaces, and the

WHERE predicate. To support the definition of concurrent indexes, the type clause can end with

385Revision 2.6, March 2025 C++ Object Persistence with ODB

19.6 PostgreSQL Index Definitions

the word CONCURRENTLY (upper and lower cases are recognized). The column options can be

used to specify collations, operator classes, and the sort order. For example:

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index \
 type("UNIQUE CONCURRENTLY") \
 method("HASH") \
 member(name_, "DESC") \
 options("WITH(FILLFACTOR = 80)")
};

Index names in PostgreSQL are schema-global. To avoid name clashes, ODB automatically

prefixes each index name with the table name on which it is defined.

19.7 PostgreSQL Stored Procedures and Functions

ODB native views (Section 10.6, "Native Views") can be used to call PostgreSQL stored proce­

dures and functions. For example, assuming we are using the person class from Chapter 2,

"Hello World Example" (and the corresponding person table), we can create a stored function

that given the min and max ages returns some information about all the people in that range:

CREATE FUNCTION
person_range (IN min_age INTEGER,
 IN max_age INTEGER,
 OUT age SMALLINT,
 OUT first TEXT,
 OUT last TEXT)
RETURNS SETOF RECORD AS $$
 SELECT age, first, last
 FROM person
 WHERE age >= min_age AND age <= max_age;
$$ LANGUAGE SQL STABLE;

Given the above stored function we can then define an ODB view that can be used to call it and

retrieve its result:

Revision 2.6, March 2025386 C++ Object Persistence with ODB

19.7 PostgreSQL Stored Procedures and Functions

#pragma db view query("/*CALL*/ SELECT * FROM person_range((?))")
struct person_range
{
 unsigned short age;
 std::string first;
 std::string last;
};

Notice the special /*CALL*/ prefix: because PostgreSQL uses ordinary SELECT queries to call

functions, we need to communicate to ODB that the query is actually a function call.

The following example shows how we can use the above view to print the list of people in a

specific age range:

using query = odb::query<person_range>;
using result = odb::result<person_range>;

transaction t (db.begin ());

result r (
 db.query<person_range> (
 query::_val (1) + "," + query::_val (18)));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cerr << i->first << " " << i->last << " " << i->age << endl;

t.commit ();

Note that as with all native views, the order and types of data members must match those returned

by the stored function or procedure.

In the above example, the stored function returned a set of rows. Other common cases are func­

tions that return a single row, a single value, or nothing (VOID). An example of a function return­

ing a single row via the OUT parameters:

CREATE FUNCTION
person_age_range (IN last_name TEXT,
 OUT min_age SMALLINT,
 OUT max_age SMALLINT)
AS $$
 SELECT min(age), max(age)
 FROM person
 WHERE last = last_name;
$$ LANGUAGE SQL STABLE;

387Revision 2.6, March 2025 C++ Object Persistence with ODB

19.7 PostgreSQL Stored Procedures and Functions

#pragma db view query("/*CALL*/ SELECT * FROM person_age_range((?))")
struct person_age_range
{
 unsigned short min_age;
 unsigned short max_age;
};

using query = odb::query<person_age_range>;

person_age_range r (
 db.query_value<person_age_range> (
 query::_val ("Doe")));

An example of a function returning a single value:

CREATE FUNCTION
person_count ()
RETURNS BIGINT AS $$
 SELECT count(id)
 FROM person;
$$ LANGUAGE SQL STABLE;

#pragma db view query("/*CALL*/ SELECT * FROM person_count()")
struct person_count
{
 unsigned long long count;
};

unsigned long long count (db.query_value<person_count> ().count);

Finally, a function that returns VOID:

CREATE FUNCTION
person_increment_age (IN min_age INTEGER,
 IN max_age INTEGER)
RETURNS VOID AS $$
 UPDATE person
 SET age = age + 1
 WHERE age >= min_age AND age <= max_age;
$$ LANGUAGE SQL;

#pragma db view query("/*CALL*/ SELECT * FROM person_increment_age((?))")
struct person_increment_age {};

using query = odb::query<person_increment_age>;

db.query_value<person_increment_age> (
 query::_val (1) + "," +
 query::_val (18));

Revision 2.6, March 2025388 C++ Object Persistence with ODB

19.7 PostgreSQL Stored Procedures and Functions

We can reuse a single view to call several functions (or procedure; see below) that return VOID
or, more generally, return the same result, by specifying the function (or procedure) at the call site

rather than in the view definition. For example:

#pragma db view
struct no_result {};

using query = odb::query<no_result>;

db.query_one<no_result> (
 "/*CALL*/ SELECT * FROM person_increment_age(" +
 query::_val (1) + "," +
 query::_val (18) + ")");

In contrast to functions, stored procedures in PostgreSQL are called with the CALL statement.

They can only return a single set of values via the OUT parameters. If there are no output parame­

ters, then a stored procedure doesn’t return anything. For example:

CREATE PROCEDURE
person_increment_age (IN id BIGINT,
 OUT first TEXT,
 OUT last TEXT,
 OUT age SMALLINT)
AS $$
 UPDATE person
 SET age = age + 1
 WHERE person.id = id
 RETURNING first, last, age;
$$ LANGUAGE SQL;

#pragma db view query("CALL person_increment_age((?))")
struct person_increment_age
{
 std::string first;
 std::string last;
 unsigned short age;
};

using query = odb::query<person_increment_age>;

person_increment_age r (
 db.query_value<person_increment_age> (
 query::_val (123) + ",NULL,NULL,NULL"));

Note that in the CALL statement, output parameters must be included in the argument list,

normally as NULL.

389Revision 2.6, March 2025 C++ Object Persistence with ODB

19.7 PostgreSQL Stored Procedures and Functions

A stored procedure that doesn’t return anything and has no parameters can be called with

execute() (3.12 Executing Native SQL Statements) rather than query(). Such a procedure

can also control transactions. For example:

CREATE PROCEDURE
person_increment_all_ages ()
AS $$
BEGIN
 UPDATE person
 SET age = age + 1;
 COMMIT;
END;
$$ LANGUAGE PLPGSQL;

db.connection ()->execute ("CALL person_increment_all_ages()");

For more information on how to call stored procedures and functions with the various return

approaches refer to the pgsql/stored-proc test in the odb-tests package.

Revision 2.6, March 2025390 C++ Object Persistence with ODB

19.7 PostgreSQL Stored Procedures and Functions

20 Oracle Database

To generate support code for the Oracle database you will need to pass the

"--database oracle" (or "-d oracle") option to the ODB compiler. Your application

will also need to link to the Oracle ODB runtime library (libodb-oracle). All

Oracle-specific ODB classes are defined in the odb::oracle namespace.

20.1 Oracle Type Mapping

The following table summarizes the default mapping between basic C++ value types and Oracle

database types. This mapping can be customized on the per-type and per-member basis using the

ODB Pragma Language (Chapter 14, "ODB Pragma Language").

C++ Type Oracle Type Default NULL Semantics

bool NUMBER(1) NOT NULL

char CHAR(1) NOT NULL

signed char NUMBER(3) NOT NULL

unsigned char NUMBER(3) NOT NULL

short NUMBER(5) NOT NULL

unsigned short NUMBER(5) NOT NULL

int NUMBER(10) NOT NULL

unsigned int NUMBER(10) NOT NULL

long NUMBER(19) NOT NULL

unsigned long NUMBER(20) NOT NULL

long long NUMBER(19) NOT NULL

unsigned long long NUMBER(20) NOT NULL

float BINARY_FLOAT NOT NULL

double BINARY_DOUBLE NOT NULL

std::string VARCHAR2(512) NULL

char[N] VARCHAR2(N-1) NULL

391Revision 2.6, March 2025 C++ Object Persistence with ODB

20 Oracle Database

It is possible to map the char C++ type to an integer database type (for example, NUMBER(3))

using the db type pragma (Section 14.4.3, "type").

In Oracle empty VARCHAR2 and NVARCHAR2 strings are represented as a NULL value. As a

result, columns of the std::string and char[N] types are by default declared as NULL
except for primary key columns. However, you can override this by explicitly declaring such

columns as NOT NULL with the db not_null pragma (Section 14.4.6, "null/not_null").

This also means that for object ids that are mapped to these Oracle types, an empty string is an

invalid value.

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to the

Oracle types corresponding to their underlying integral types (see table above). The default NULL

semantics is NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1,
 sweet,
 sour = 4,
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Automatically mapped to NUMBER(10).
 taste taste_; // Automatically mapped to NUMBER(3).
};

It is also possible to add support for additional Oracle types, such as XML, geospatial types,

user-defined types, and collections (arrays, table types). For more information, refer to Section

14.8, "Database Type Mapping Pragmas".

20.1.1 String Type Mapping

The Oracle ODB runtime library provides support for mapping the std::string, char[N],

and std::array<char, N> types to the Oracle CHAR, VARCHAR2, CLOB, NCHAR, NVAR­
CHAR2, and NCLOB types. However, these mappings are not enabled by default (in particular, by

default, std::array will be treated as a container). To enable the alternative mappings for

these types we need to specify the database type explicitly using the db type pragma (Section

14.4.3, "type"), for example:

Revision 2.6, March 2025392 C++ Object Persistence with ODB

20.1.1 String Type Mapping

#pragma db object
class object
{
 ...

 #pragma db type ("CHAR(2)")
 char state_[2];

 #pragma db type ("VARCHAR(128)") null
 std::string name_;

 #pragma db type ("CLOB")
 std::string text_;
};

Alternatively, this can be done on the per-type basis, for example:

#pragma db value(std::string) type("VARCHAR(128)") null

#pragma db object
class object
{
 ...

 std::string name_; // Mapped to VARCHAR(128).

 #pragma db type ("CLOB")
 std::string text_; // Mapped to CLOB.
};

The char[N] and std::array<char, N> values may or may not be zero-terminated.

When extracting such values from the database, ODB will append the zero terminator if there is

enough space.

20.1.2 Binary Type Mapping

The Oracle ODB runtime library provides support for mapping the std::vector<char>,

std::vector<unsigned char>, char[N], unsigned char[N],

std::array<char, N>, and std::array<unsigned char, N> types to the Oracle

BLOB and RAW types. However, these mappings are not enabled by default (in particular, by

default, std::vector and std::array will be treated as containers). To enable the alterna­

tive mappings for these types we need to specify the database type explicitly using the db type
pragma (Section 14.4.3, "type"), for example:

#pragma db object
class object
{
 ...

393Revision 2.6, March 2025 C++ Object Persistence with ODB

20.1.2 Binary Type Mapping

 #pragma db type("BLOB")
 std::vector<char> buf_;

 #pragma db type("RAW(16)")
 unsigned char uuid_[16];
};

Alternatively, this can be done on the per-type basis, for example:

using buffer = std::vector<char>;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to BLOB.
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and

std::array<char, N> parameters are by default passed as a string rather than a binary. To

pass such parameters as a binary, we need to specify the database type explicitly in the

_val()/_ref() calls. Note also that we don’t need to do this for the integrated queries, for

example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::oracle::id_raw> (u));
db.query<object> (query::uuid == query::_ref (u));

20.2 Oracle Database Class

The Oracle database class encapsulates the OCI environment handle as well as the database

connection string and user credentials that are used to establish connections to the database. It has

the following interface:

namespace odb
{
 namespace oracle
 {
 class database: public odb::database
 {
 public:
 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 ub2 charset = 0,
 ub2 ncharset = 0,

Revision 2.6, March 2025394 C++ Object Persistence with ODB

20.2 Oracle Database Class

 OCIEnv* environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& password,
 const std::string& service,
 const std::string& host,
 unsigned int port = 0,
 ub2 charset = 0,
 ub2 ncharset = 0,
 OCIEnv* environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (int& argc,
 char* argv[],
 bool erase = false,
 ub2 charset = 0,
 ub2 ncharset = 0,
 OCIEnv* environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

 public:
 const std::string&
 user () const;

 const std::string&
 password () const;

 const std::string&
 db () const;

 const std::string&
 service () const;

 const std::string&
 host () const;

 unsigned int
 port () const;

 ub2
 charset () const;

 ub2
 ncharset () const;

 OCIEnv*
 environment ();

395Revision 2.6, March 2025 C++ Object Persistence with ODB

20.2 Oracle Database Class

 public:
 connection_ptr
 connection ();
 };
 }
}

You will need to include the <odb/oracle/database.hxx> header file to make this class

available in your application.

The overloaded database constructors allow us to specify the Oracle database parameters that

should be used when connecting to the database. The db argument in the first constructor is a

connection identifier that specifies the database to connect to. For more information on the format

of the connection identifier, refer to the Oracle documentation.

The second constructor allows us to specify the individual components of a connection identifier

as the service, host, and port arguments. If the host argument is empty, then localhost is

used by default. Similarly, if the port argument is zero, then the default port is used.

The last constructor extracts the database parameters from the command line. The following

options are recognized:

 --user <login>
 --password <password>
 --database <connect-id>
 --service <name>
 --host <host>
 --port <integer>
 --options-file <file>

The --options-file option allows us to specify some or all of the database options in a file

with each option appearing on a separate line followed by a space and an option value. Note that

it is invalid to specify the --database option together with --service, --host, or

--port options.

If the erase argument to this constructor is true, then the above options are removed from the

argv array and the argc count is updated accordingly. This is primarily useful if your applica­

tion accepts other options or arguments and you would like to get the Oracle options out of the

argv array.

This constructor throws the odb::oracle::cli_exception exception if the Oracle option

values are missing or invalid. See section Section 20.4, "Oracle Exceptions" for more information

on this exception.

Revision 2.6, March 2025396 C++ Object Persistence with ODB

20.2 Oracle Database Class

The static print_usage() function prints the list of options with short descriptions that are

recognized by this constructor.

Additionally, all the constructors have the charset, ncharset, and environment argu­

ments. The charset argument specifies the client-side database character encoding. Character

data corresponding to the CHAR, VARCHAR2, and CLOB types will be delivered to and received

from the application in this encoding. Similarly, the ncharset argument specifies the

client-side national character encoding. Character data corresponding to the NCHAR, NVAR­
CHAR2, and NCLOB types will be delivered to and received from the application in this encoding.

For the complete list of available character encoding values, refer to the Oracle documentation.

Commonly used encoding values are 873 (UTF-8), 31 (ISO-8859-1), and 1000 (UTF-16). If the

database character encoding is not specified, then the NLS_LANG environment/registry variable

is used. Similarly, if the national character encoding is not specified, then the NLS_NCHAR envi­

ronment/registry variable is used. For more information on character encodings, refer to the

OCIEnvNlsCreate() function in the Oracle Call Interface (OCI) documentation.

The environment argument allows us to provide a custom OCI environment handle. If this

argument is not NULL, then the passed handle is used in all the OCI function calls made by this

database class instance. Note also that the database instance does not assume ownership of

the passed environment handle and this handle should be valid for the lifetime of the database
instance. If a custom environment handle is used, then the charset and ncharset arguments

have no effect.

The last argument to all of the constructors is a pointer to the connection factory. In C++98/03, it

is std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a

non-NULL value, the database instance assumes ownership of the factory instance. The connec­

tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the

database instance.

The connection() function returns a pointer to the Oracle database connection encapsulated

by the odb::oracle::connection class. For more information on oracle::connec­
tion, refer to Section 20.3, "Oracle Connection and Connection Factory".

20.3 Oracle Connection and Connection Factory

The oracle::connection class has the following interface:

namespace odb
{
 namespace oracle
 {
 class connection: public odb::connection

397Revision 2.6, March 2025 C++ Object Persistence with ODB

20.3 Oracle Connection and Connection Factory

 {
 public:
 connection (database&);
 connection (database&, OCISvcCtx*);

 OCISvcCtx*
 handle ();

 OCIError*
 error_handle ();

 details::buffer&
 lob_buffer ();
 };

 using connection_ptr = details::shared_ptr<connection>;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connections".

The first overloaded oracle::connection constructor creates a new OCI service context.

The OCI statement caching is enabled for the underlying session while the OCI connection

pooling and session pooling are not used. The second constructor allows us to create a connec­
tion instance by providing an already connected Oracle service context. Note that the

connection instance assumes ownership of this handle. The handle() accessor returns the

OCI service context handle associated with the connection instance.

An OCI error handle is allocated for each connection instance and is available via the

error_handle() accessor function.

Additionally, each connection instance maintains a large object (LOB) buffer. This buffer is

used by the Oracle ODB runtime as an intermediate storage for piecewise handling of LOB data.

By default, the LOB buffer has zero initial capacity and is expanded to 4096 bytes when the first

LOB operation is performed. If your application requires a bigger or smaller LOB buffer, you can

specify a custom capacity using the lob_buffer() accessor.

The oracle::connection_factory abstract class has the following interface:

namespace odb
{
 namespace oracle
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

Revision 2.6, March 2025398 C++ Object Persistence with ODB

20.3 Oracle Connection and Connection Factory

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database

instance. This happens in the odb::oracle::database class constructors. The

connect() function is called whenever a database connection is requested.

The two implementations of the connection_factory interface provided by the Oracle

ODB runtime are new_connection_factory and connection_pool_factory. You

will need to include the <odb/oracle/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli­

cation.

The new_connection_factory class creates a new connection whenever one is requested.

When a connection is no longer needed, it is released and closed. The new_connec­
tion_factory class has the following interface:

namespace odb
{
 namespace oracle
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the following

interface:

namespace odb
{
 namespace oracle
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&);

399Revision 2.6, March 2025 C++ Object Persistence with ODB

20.3 Oracle Connection and Connection Factory

 pooled_connection (database_type&, OCISvcCtx*);
 };

 using pooled_connection_ptr = details::shared_ptr<pooled_connection>;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor speci­

fies the maximum number of concurrent connections that this pool factory will maintain. Simi­

larly, the min_connections argument specifies the minimum number of available connec­

tions that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection

that can be returned. If there is none, the pool factory checks the max_connections value to

see if a new connection can be created. If the total number of connections maintained by the pool

is less than this value, then a new connection is created and returned. Otherwise, the caller is

blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting

for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the

pool factory checks whether the total number of connections maintained by the pool is greater

than the min_connections value. If that’s the case, the connection is closed. Otherwise, the

connection is added to the pool of available connections to be returned on the next request. In

other words, if the number of connections maintained by the pool exceeds min_connections
and there are no callers waiting for a new connection, the pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever all

of the existing connections are in use. If the min_connections value is 0, then the pool will

never close a connection and instead maintain all the connections that were ever created.

The create() virtual function is called whenever the pool needs to create a new connection.

By deriving from the connection_pool_factory class and overriding this function we can

implement custom connection establishment and configuration.

If you pass NULL as the connection factory to one of the database constructors, then the

connection_pool_factory instance will be created by default with the min and max

connections values set to 0. The following code fragment shows how we can pass our own

connection factory instance:

#include <odb/database.hxx>

#include <odb/oracle/database.hxx>
#include <odb/oracle/connection-factory.hxx>

Revision 2.6, March 2025400 C++ Object Persistence with ODB

20.3 Oracle Connection and Connection Factory

int
main (int argc, char* argv[])
{
 unique_ptr<odb::oracle::connection_factory> f (
 new odb::oracle::connection_pool_factory (20));

 unique_ptr<odb::database> db (
 new oracle::database (argc, argv, false, 0, 0, 0, f));
}

20.4 Oracle Exceptions

The Oracle ODB runtime library defines the following Oracle-specific exceptions:

namespace odb
{
 namespace oracle
 {
 class database_exception: odb::database_exception
 {
 public:
 class record
 {
 public:
 sb4
 error () const;

 const std::string&
 message () const;
 };

 using records = std::vector<record>;

 using size_type = records::size_type;
 using iterator = records::const_iterator;

 iterator
 begin () const;

 iterator
 end () const;

 size_type
 size () const;

 virtual const char*
 what () const throw ();
 };

401Revision 2.6, March 2025 C++ Object Persistence with ODB

20.4 Oracle Exceptions

 class cli_exception: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };

 class invalid_oci_handle: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };
 }
}

You will need to include the <odb/oracle/exceptions.hxx> header file to make these

exceptions available in your application.

The odb::oracle::database_exception is thrown if an Oracle database operation

fails. The Oracle-specific error information is stored as a series of records, each containing the

error code as a signed 4-byte integer and the message string. All this information is also

combined and returned in a human-readable form by the what() function.

The odb::oracle::cli_exception is thrown by the command line parsing constructor of

the odb::oracle::database class if the Oracle option values are missing or invalid. The

what() function returns a human-readable description of an error.

The odb::oracle::invalid_oci_handle is thrown if an invalid handle is passed to an

OCI function or if an OCI function was unable to allocate a handle. The former normally indi­

cates a programming error while the latter indicates an out of memory condition. The what()

function returns a human-readable description of an error.

20.5 Oracle Limitations

The following sections describe Oracle-specific limitations imposed by the current Oracle and

ODB runtime versions.

20.5.1 Identifier Truncation

Oracle limits the length of database identifiers (table, column, etc., names) to 30 characters. The

ODB compiler automatically truncates any identifier that is longer than 30 characters. This,

however, can lead to duplicate names. A common symptom of this problem are errors during the

database schema creation indicating that a database object with the same name already exists. To

resolve this problem we can assign custom, shorter identifiers using the db table and

db column pragmas (Chapter 14, "ODB Pragma Language"). For example:

Revision 2.6, March 2025402 C++ Object Persistence with ODB

20.5 Oracle Limitations

#pragma db object
class long_class_name
{
 ...

 std::vector<int> long_container_x_;
 std::vector<int> long_container_y_;
};

In the above example, the names of the two container tables will be

long_class_name_long_container_x_ and

long_class_name_long_container_y_. However, when truncated to 30 characters,

they both become long_class_name_long_container. To resolve this collision we can

assign a custom table name for each container:

#pragma db object
class long_class_name
{
 ...

 #pragma db table("long_class_name_cont_x")
 std::vector<int> long_container_x_;

 #pragma db table("long_class_name_cont_y")
 std::vector<int> long_container_y_;
};

20.5.2 Query Result Caching

Oracle ODB runtime implementation does not perform query result caching (Section 4.4, "Query

Result") even when explicitly requested. The OCI API supports interleaving execution of multi­

ple prepared statements on a single connection. As a result, with OCI, it is possible to have multi­

ple uncached results and calls to other database functions do not invalidate them. The only limita­

tion of the uncached Oracle results is the unavailability of the result::size() function. If

you call this function on an Oracle query result, then the odb::result_not_cached excep­

tion (Section 3.14, "ODB Exceptions") is always thrown. Future versions of the Oracle ODB

runtime library may add support for result caching.

20.5.3 Foreign Key Constraints

ODB assumes the standard SQL behavior which requires that foreign key constraints checking is

deferred until the transaction is committed. Default Oracle behavior is to check such constraints

immediately. As a result, when used with ODB, a custom database schema that defines foreign

key constraints may need to declare such constraints as INITIALLY DEFERRED, as shown in

the following example. By default, schemas generated by the ODB compiler meet this require­

ment automatically.

403Revision 2.6, March 2025 C++ Object Persistence with ODB

20.5.2 Query Result Caching

CREATE TABLE Employee (
 ...
 employer NUMBER(20) REFERENCES Employer(id)
 DEFERRABLE INITIALLY DEFERRED);

You can override the default behavior and instruct the ODB compiler to generate non-deferrable

foreign keys by specifying the --fkeys-deferrable-mode not_deferrable ODB

compiler option. Note, however, that in this case the order in which you persist, update, and erase

objects within a transaction becomes important.

20.5.4 Unique Constraint Violations

Due to the granularity of the Oracle error codes, it is impossible to distinguish between the dupli­

cate primary key and other unique constraint violations. As a result, when making an object

persistent, the Oracle ODB runtime will translate all unique constraint violation errors to the

object_already_persistent exception (Section 3.14, "ODB Exceptions").

20.5.5 Large FLOAT and NUMBER Types

The Oracle FLOAT type with a binary precision greater than 53 and fixed-point NUMBER type

with a decimal precision greater than 15 cannot be automatically extracted into the C++ float
and double types. Instead, the Oracle ODB runtime uses a 21-byte buffer containing the binary

representation of a value as an image type for such FLOAT and NUMBER types. In order to

convert them into an application-specific large number representation, you will need to provide a

suitable value_traits template specialization. For more information on the binary format

used to store the FLOAT and NUMBER values, refer to the Oracle Call Interface (OCI) documen­

tation.

An alternative approach to accessing large FLOAT and NUMBER values is to map these type to

one of the natively supported ones, as discussed in Section 14.8, "Database Type Mapping

Pragmas".

Note that a NUMBER type that is used to represent a floating point number (declared by specifying

NUMBER without any range and scale) can be extracted into the C++ float and double types.

20.5.6 Timezones

ODB does not currently support the Oracle date-time types with timezone information. However,

these types can be accessed by mapping them to one of the natively supported types, as discussed

in Section 14.8, "Database Type Mapping Pragmas".

Revision 2.6, March 2025404 C++ Object Persistence with ODB

20.5.4 Unique Constraint Violations

20.5.7 LONG Types

ODB does not support the deprecated Oracle LONG and LONG RAW data types. However, these

types can be accessed by mapping them to one of the natively supported types, as discussed in

Section 14.8, "Database Type Mapping Pragmas".

20.5.8 LOB Types and By-Value Accessors/Modifiers

As discussed in Section 14.4.5, "get/set/access", by-value accessor and modifier expressions

cannot be used with data members of Oracle large object (LOB) data types: BLOB, CLOB, and

NCLOB. The Oracle ODB runtime uses streaming for reading/writing LOB data directly from/to

data members. As a result, by-reference accessors and modifiers should be used for these data

types.

20.5.9 Database Schema Evolution

In Oracle, the type of the name column in the schema_version table is VARCHAR2(512).

Because this column is a primary key and VARCHAR2 represents empty strings as NULL values,

it is impossible to store an empty string in this column, which is what is used to represent the

default schema name. As a result, in Oracle, the empty schema name is stored as a string contain­

ing a single space character. ODB performs all the necessary translations automatically and

normally you do not need to worry about this implementation detail unless you are querying or

modifying the schema_version table directly.

20.6 Oracle Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define an Oracle

index, the type clause specifies the index type (for example, UNIQUE, BITMAP), the method
clause is not used, and the options clause specifies additional index properties, such as parti­

tioning, table spaces, etc. The column options can be used to specify the sort order. For example:

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index \
 type("BITMAP") \
 member(name_, "DESC") \
 options("TABLESPACE TBS1")
};

405Revision 2.6, March 2025 C++ Object Persistence with ODB

20.6 Oracle Index Definitions

Index names in Oracle are schema-global. To avoid name clashes, ODB automatically prefixes

each index name with the table name on which it is defined.

Revision 2.6, March 2025406 C++ Object Persistence with ODB

20.6 Oracle Index Definitions

21 Microsoft SQL Server Database

To generate support code for the SQL Server database you will need to pass the

"--database mssql" (or "-d mssql") option to the ODB compiler. Your application will

also need to link to the SQL Server ODB runtime library (libodb-mssql). All SQL

Server-specific ODB classes are defined in the odb::mssql namespace.

21.1 SQL Server Type Mapping

The following table summarizes the default mapping between basic C++ value types and SQL

Server database types. This mapping can be customized on the per-type and per-member basis

using the ODB Pragma Language (Chapter 14, "ODB Pragma Language").

407Revision 2.6, March 2025 C++ Object Persistence with ODB

21 Microsoft SQL Server Database

C++ Type SQL Server Type
Default NULL Seman­

tics

bool BIT NOT NULL

char CHAR(1) NOT NULL

signed char TINYINT NOT NULL

unsigned char TINYINT NOT NULL

short SMALLINT NOT NULL

unsigned short SMALLINT NOT NULL

int INT NOT NULL

unsigned int INT NOT NULL

long BIGINT NOT NULL

unsigned long BIGINT NOT NULL

long long BIGINT NOT NULL

unsigned long
long

BIGINT NOT NULL

float REAL NOT NULL

double FLOAT NOT NULL

std::string VARCHAR(512)/VARCHAR(256) NOT NULL

char[N] VARCHAR(N-1) NOT NULL

std::wstring NVARCHAR(512)/NVARCHAR(256) NOT NULL

wchar_t[N] NVARCHAR(N-1) NOT NULL

GUID UNIQUEIDENTIFIER NOT NULL

It is possible to map the char C++ type to an integer database type (for example, TINYINT)

using the db type pragma (Section 14.4.3, "type").

Note that the std::string and std::wstring types are mapped differently depending on

whether a member of one of these types is an object id or not. If the member is an object id, then

for this member std::string is mapped to VARCHAR(256) and std::wstring — to

NVARCHAR(256). Otherwise, std::string is mapped to VARCHAR(512) and

std::wstring — to NVARCHAR(512). Note also that you can always change this mapping

Revision 2.6, March 2025408 C++ Object Persistence with ODB

21.1 SQL Server Type Mapping

using the db type pragma (Section 14.4.3, "type").

Additionally, by default, C++ enums and C++11 enum classes are automatically mapped to the

SQL Server types corresponding to their underlying integral types (see table above). The default

NULL semantics is NOT NULL. For example:

enum color {red, green, blue};
enum class taste: unsigned char
{
 bitter = 1,
 sweet,
 sour = 4,
 salty
};

#pragma db object
class object
{
 ...

 color color_; // Automatically mapped to INT.
 taste taste_; // Automatically mapped to TINYINT.
};

Note also that because SQL Server does not support unsigned integers, the unsigned short,

unsigned int, and unsigned long/unsigned long long C++ types are by default

mapped to the SMALLINT, INT, and BIGINT SQL Server types, respectively. The sign bit of

the value stored by the database for these types will contain the most significant bit of the actual

unsigned value being persisted. Similarly, because there is no signed version of the TINYINT
SQL Server type, by default, the signed char C++ type is mapped to TINYINT. As a result,

the most significant bit of the value stored by the database for this type will contain the sign bit of

the actual signed value being persisted.

It is also possible to add support for additional SQL Server types, such as geospatial types, XML,

and user-defined types. For more information, refer to Section 14.8, "Database Type Mapping

Pragmas".

21.1.1 String Type Mapping

The SQL Server ODB runtime library provides support for mapping the std::string,

char[N], and std::array<char, N> types to the SQL Server CHAR, VARCHAR, and

TEXT types as well as the std::wstring, wchar_t[N], and std::array<wchar_t,
N> types to NCHAR, NVARCHAR, and NTEXT. However, these mappings are not enabled by

default (in particular, by default, std::array will be treated as a container). To enable the

alternative mappings for these types we need to specify the database type explicitly using the

db type pragma (Section 14.4.3, "type"), for example:

409Revision 2.6, March 2025 C++ Object Persistence with ODB

21.1.1 String Type Mapping

#pragma db object
class object
{
 ...

 #pragma db type ("CHAR(2)")
 char state_[2];

 #pragma db type ("NVARCHAR(max)")
 std::wstring text_;
};

Alternatively, this can be done on the per-type basis, for example:

#pragma db value(std::wstring) type("NVARCHAR(max)")

#pragma db object
class object
{
 ...

 std::wstring text_; // Mapped to NVARCHAR(max).
};

The char[N], std::array<char, N>, wchar_t[N], and std::array<wchar_t,
N> values may or may not be zero-terminated. When extracting such values from the database,

ODB will append the zero terminator if there is enough space.

See also Section 21.1.4, "Long String and Binary Types" for certain limitations of long string

types.

21.1.2 Binary Type and UNIQUEIDENTIFIER Mapping

The SQL Server ODB runtime library also provides support for mapping the

std::vector<char>, std::vector<unsigned char>, char[N],

unsigned char[N], std::array<char, N>, and std::array<unsigned char,
N> types to the SQL Server BINARY, VARBINARY, and IMAGE types. There is also support for

mapping the char[16] array to the SQL Server UNIQUEIDENTIFIER type. However, these

mappings are not enabled by default (in particular, by default, std::vector and

std::array will be treated as containers). To enable the alternative mappings for these types

we need to specify the database type explicitly using the db type pragma (Section 14.4.3,

"type"), for example:

#pragma db object
class object
{
 ...

Revision 2.6, March 2025410 C++ Object Persistence with ODB

21.1.2 Binary Type and UNIQUEIDENTIFIER Mapping

 #pragma db type("UNIQUEIDENTIFIER")
 char uuid_[16];

 #pragma db type("VARBINARY(max)")
 std::vector<char> buf_;

 #pragma db type("BINARY(256)")
 unsigned char data_[256];
};

Alternatively, this can be done on the per-type basis, for example:

using buffer = std::vector<char>;
#pragma db value(buffer) type("VARBINARY(max)")

#pragma db object
class object
{
 ...

 buffer buf_; // Mapped to VARBINARY(max).
};

Note also that in native queries (Chapter 4, "Querying the Database") char[N] and

std::array<char, N> parameters are by default passed as a string rather than a binary. To

pass such parameters as a binary, we need to specify the database type explicitly in the

_val()/_ref() calls. Note also that we don’t need to do this for the integrated queries, for

example:

char u[16] = {...};

db.query<object> ("uuid = " + query::_val<odb::mssql::id_binary> (u));
db.query<object> (
 "uuid = " + query::_val<odb::mssql::id_uniqueidentifier> (u));
db.query<object> (query::uuid == query::_ref (u));

See also Section 21.1.4, "Long String and Binary Types" for certain limitations of long binary

types.

21.1.3 ROWVERSION Mapping

ROWVERSION is a special SQL Server data type that is automatically incremented by the

database server whenever a row is inserted or updated. As such, it is normally used to implement

optimistic concurrency and ODB provides support for using ROWVERSION instead of the more

portable approach for optimistic concurrency (Chapter 12, "Optimistic Concurrency").

411Revision 2.6, March 2025 C++ Object Persistence with ODB

21.1.3 ROWVERSION Mapping

ROWVERSION is a 64-bit value which is mapped by ODB to unsigned long long. As a

result, to use ROWVERSION for optimistic concurrency we need to make sure that the version

column is of the unsigned long long type. We also need to explicitly specify that it should

be mapped to the ROWVERSION data type. For example:

#pragma db object optimistic
class person
{
 ...

 #pragma db version type("ROWVERSION")
 unsigned long long version_;
};

21.1.4 Long String and Binary Types

For SQL Server, ODB handles character, national character, and binary data in two different

ways depending on its maximum length. If the maximum length (in bytes) is less than or equal to

the limit specified with the --mssql-short-limit ODB compiler option (1024 by default),

then it is treated as short data, otherwise — long data. For short data ODB pre-allocates an inter­

mediate buffer of the maximum size and binds it directly to a parameter or result column. This

way the underlying database API (ODBC) can read/write directly from/to this buffer. In the case

of long data, the data is read/written in chunks using the SQLGetData()/SQLPutData()
ODBC functions. While the long data approach reduces the amount of memory used by the appli­

cation, it may require greater CPU resources.

Long data has a number of limitations. In particular, when setting a custom short data limit, make

sure that it is sufficiently large so that no object id in the application is treated as long data. It is

also impossible to load an object or view with long data more than once as part of a query result

iteration (Section 4.4, "Query Result"). Any such attempt will result in the

odb::mssql::long_data_reload exception (Section 21.4, "SQL Server Exceptions").

For example:

#pragma db object
class object
{
 ...

 int num_;

 #pragma db type("VARCHAR(max)") // Long data.
 std::string str_;
};

using query = odb::query<object>;
using result = odb::result<object>;

Revision 2.6, March 2025412 C++ Object Persistence with ODB

21.1.4 Long String and Binary Types

transaction t (db.begin ());

result r (db.query<object> (query::num < 100));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
 if (!i->str_.empty ()) // First load.
 {
 object o;
 i.load (o); // Error: second load, long_data_reload is thrown.
 }
}

t.commit ();

Finally, if a native view (Section 10.6, "Native Views") contains one or more long data members,

then such members should come last both in the select-list of the native SQL query and the list of

data members in the C++ class.

21.2 SQL Server Database Class

The SQL Server database class encapsulates the ODBC environment handle as well as the

server instance address and user credentials that are used to establish connections to the database.

It has the following interface:

namespace odb
{
 namespace mssql
 {
 enum protocol
 {
 protocol_auto,
 protocol_tcp, // TCP/IP.
 protocol_lpc, // Shared memory (local procedure call).
 protocol_np // Named pipes.
 };

 enum transaction_isolation
 {
 isolation_read_uncommitted,
 isolation_read_committed, // SQL Server default.
 isolation_repeatable_read,
 isolation_snapshot,
 isolation_serializable
 };

 class database: public odb::database
 {
 public:

413Revision 2.6, March 2025 C++ Object Persistence with ODB

21.2 SQL Server Database Class

 using protocol_type = protocol;
 using transaction_isolation_type = transaction_isolation;

 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 const std::string& server,
 const std::string& driver = "",
 const std::string& extra_connect_string = "",
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 protocol_type protocol = protocol_auto,
 const std::string& host = "",
 const std::string& instance = "",
 const std::string& driver = "",
 const std::string& extra_connect_string = "",
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& user,
 const std::string& password,
 const std::string& db,
 const std::string& host,
 unsigned int port,
 const std::string& driver = "",
 const std::string& extra_connect_string = "",
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (const std::string& connect_string,
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 database (int& argc,
 char* argv[],
 bool erase = false,
 const std::string& extra_connect_string = "",
 transaction_isolation_type = isolation_read_committed,
 SQLHENV environment = 0,
 std::[auto|unique]_ptr<connection_factory> = 0);

 static void
 print_usage (std::ostream&);

Revision 2.6, March 2025414 C++ Object Persistence with ODB

21.2 SQL Server Database Class

 public:
 const std::string&
 user () const;

 const std::string&
 password () const;

 const std::string&
 db () const;

 protocol_type
 protocol () const;

 const std::string&
 host () const;

 const std::string&
 instance () const;

 unsigned int
 port () const;

 const std::string&
 server () const;

 const std::string&
 driver () const;

 const std::string&
 extra_connect_string () const;

 transaction_isolation_type
 transaction_isolation () const;

 const std::string&
 connect_string () const;

 SQLHENV
 environment ();

 public:
 connection_ptr
 connection ();
 };
 }
}

415Revision 2.6, March 2025 C++ Object Persistence with ODB

21.2 SQL Server Database Class

You will need to include the <odb/mssql/database.hxx> header file to make this class

available in your application.

The overloaded database constructors allow us to specify the SQL Server database parameters

that should be used when connecting to the database. The user and password arguments

specify the login name and password. If user is empty, then Windows authentication is used and

the password argument is ignored. The db argument specifies the database name to open. If it

is empty, then the default database for the user is used.

The server argument in the first constructor specifies the SQL Server instance address in the

standard SQL Server address format:

[protocol:]host[\instance][,port]

Where protocol can be tcp (TCP/IP), lpc (shared memory), or np (named pipe). If protocol

is not specified, then a suitable protocol is automatically selected based on the SQL Server Native

Client configuration. The host component can be a host name or an IP address. If instance is

not specified, then the default SQL Server instance is assumed. If port is not specified, then the

default SQL Server port is used (1433). Note that you would normally specify either the instance

name or the port, but not both. If both are specified, then the instance name is ignored by the SQL

Server Native Client ODBC driver. For more information on the format of the SQL Server

address, refer to the SQL Server Native Client ODBC driver documentation.

The second and third constructors allow us to specify all these address components (protocol,

host, instance, and port) as separate arguments. The third constructor always connects using

TCP/IP to the specified host and port.

The driver argument specifies the SQL Server Native Client ODBC driver that should be used

to connect to the database. If not specified, then the latest available version is used. The following

examples show common ways of connecting to the database using the first three constructors:

// Connect to the default SQL Server instance on the local machine
// using the default protocol. Login as ’test’ with password ’secret’
// and open the ’example_db’ database.
//
odb::mssql::database db1 ("test",
 "secret",
 "example_db");

// As above except use Windows authentication and open the default
// database for this user.
//
odb::mssql::database db2 ("",
 "",
 "");

Revision 2.6, March 2025416 C++ Object Persistence with ODB

21.2 SQL Server Database Class

// Connect to the default SQL Server instance on ’onega’ using the
// default protocol. Login as ’test’ with password ’secret’ and open
// the ’example_db’ database.
//
odb::mssql::database db3 ("test",
 "secret",
 "example_db"
 "onega");

// As above but connect to the ’production’ SQL Server instance.
//
odb::mssql::database db4 ("test",
 "secret",
 "example_db"
 "onega\\production");

// Same as above but specify protocol, host, and instance as separate
// arguments.
//
odb::mssql::database db5 ("test",
 "secret",
 "example_db",
 odb::mssql::protocol_auto,
 "onega",
 "production");

// As above, but use TCP/IP as the protocol.
//
odb::mssql::database db6 ("test",
 "secret",
 "example_db"
 "tcp:onega\\production");

// Same as above but using separate arguments.
//
odb::mssql::database db7 ("test",
 "secret",
 "example_db",
 odb::mssql::protocol_tcp,
 "onega",
 "production");

// As above, but use TCP/IP port instead of the instance name.
//
odb::mssql::database db8 ("test",
 "secret",
 "example_db"
 "tcp:onega,1435");

// Same as above but using separate arguments. Note that here we
// don’t need to specify protocol explicitly since it can only

417Revision 2.6, March 2025 C++ Object Persistence with ODB

21.2 SQL Server Database Class

// be TCP/IP.
//
odb::mssql::database db9 ("test",
 "secret",
 "example_db",
 "onega",
 1435);

// As above but use the specific SQL Server Native Client ODBC
// driver version.
//
odb::mssql::database dbA ("test",
 "secret",
 "example_db"
 "tcp:onega,1435",
 "SQL Server Native Client 10.0");

The fourth constructor allows us to pass a custom ODBC connection string that provides all the

information necessary to connect to the database. Note also that all the other constructors have

the extra_connect_string argument which can be used to specify additional ODBC

connection attributes. For more information on the format of the ODBC connection string, refer

to the SQL Server Native Client ODBC driver documentation.

The last constructor extracts the database parameters from the command line. The following

options are recognized:

 --user | -U <login>
 --password | -P <password>
 --database | -d <name>
 --server | -S <address>
 --driver <name>
 --options-file <file>

The --options-file option allows us to specify some or all of the database options in a file

with each option appearing on a separate line followed by a space and an option value.

If the erase argument to this constructor is true, then the above options are removed from the

argv array and the argc count is updated accordingly. This is primarily useful if your applica­

tion accepts other options or arguments and you would like to get the SQL Server options out of

the argv array.

This constructor throws the odb::mssql::cli_exception exception if the SQL Server

option values are missing or invalid. See section Section 21.4, "SQL Server Exceptions" for more

information on this exception.

Revision 2.6, March 2025418 C++ Object Persistence with ODB

21.2 SQL Server Database Class

The static print_usage() function prints the list of options with short descriptions that are

recognized by this constructor.

Additionally, all the constructors have the transaction_isolation and environment

arguments. The transaction_isolation argument allows us to specify an alternative

transaction isolation level that should be used by all the connections created by this database

instance. The environment argument allows us to provide a custom ODBC environment

handle. If this argument is not NULL, then the passed handle is used in all the ODBC function

calls made by this database instance. Note also that the database instance does not assume

ownership of the passed environment handle and this handle should be valid for the lifetime of

the database instance.

The last argument to all of the constructors is a pointer to the connection factory. In C++98/03, it

is std::auto_ptr while in C++11 std::unique_ptr is used instead. If we pass a

non-NULL value, the database instance assumes ownership of the factory instance. The connec­

tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allows us to query the parameters of the

database instance.

The connection() function returns a pointer to the SQL Server database connection encapsu­

lated by the odb::mssql::connection class. For more information on

mssql::connection, refer to Section 21.3, "SQL Server Connection and Connection

Factory".

21.3 SQL Server Connection and Connection Factory

The mssql::connection class has the following interface:

namespace odb
{
 namespace mssql
 {
 class connection: public odb::connection
 {
 public:
 connection (database&);
 connection (database&, SQLHDBC handle);

 SQLHDBC
 handle ();

 details::buffer&
 long_data_buffer ();
 };

419Revision 2.6, March 2025 C++ Object Persistence with ODB

21.3 SQL Server Connection and Connection Factory

 using connection_ptr = details::shared_ptr<connection>;
 }
}

For more information on the odb::connection interface, refer to Section 3.6, "Connections".

The first overloaded mssql::connection constructor creates a new ODBC connection. The

created connection is configured to use the manual commit mode with multiple active result sets

(MARS) enabled. The second constructor allows us to create a connection instance by

providing an already established ODBC connection. Note that the connection instance

assumes ownership of this handle. The handle() accessor returns the underlying ODBC

connection handle associated with the connection instance.

Additionally, each connection instance maintains a long data buffer. This buffer is used by

the SQL Server ODB runtime as an intermediate storage for piecewise handling of long data. By

default, the long data buffer has zero initial capacity and is expanded to 4096 bytes when the first

long data operation is performed. If your application requires a bigger or smaller long data buffer,

you can specify a custom capacity using the long_data_buffer() accessor.

The mssql::connection_factory abstract class has the following interface:

namespace odb
{
 namespace mssql
 {
 class connection_factory
 {
 public:
 virtual void
 database (database&) = 0;

 virtual connection_ptr
 connect () = 0;
 };
 }
}

The database() function is called when a connection factory is associated with a database

instance. This happens in the odb::mssql::database class constructors. The connect()

function is called whenever a database connection is requested.

The two implementations of the connection_factory interface provided by the SQL Server

ODB runtime are new_connection_factory and connection_pool_factory. You

will need to include the <odb/mssql/connection-factory.hxx> header file to make

the connection_factory interface and these implementation classes available in your appli­

cation.

Revision 2.6, March 2025420 C++ Object Persistence with ODB

21.3 SQL Server Connection and Connection Factory

The new_connection_factory class creates a new connection whenever one is requested.

When a connection is no longer needed, it is released and closed. The new_connec­
tion_factory class has the following interface:

namespace odb
{
 namespace mssql
 {
 class new_connection_factory: public connection_factory
 {
 public:
 new_connection_factory ();
 };
};

The connection_pool_factory class implements a connection pool. It has the following

interface:

namespace odb
{
 namespace mssql
 {
 class connection_pool_factory: public connection_factory
 {
 public:
 connection_pool_factory (std::size_t max_connections = 0,
 std::size_t min_connections = 0);

 protected:
 class pooled_connection: public connection
 {
 public:
 pooled_connection (database_type&);
 pooled_connection (database_type&, SQLHDBC handle);
 };

 using pooled_connection_ptr = details::shared_ptr<pooled_connection>;

 virtual pooled_connection_ptr
 create ();
 };
};

The max_connections argument in the connection_pool_factory constructor speci­

fies the maximum number of concurrent connections that this pool factory will maintain. Simi­

larly, the min_connections argument specifies the minimum number of available connec­

tions that should be kept open.

421Revision 2.6, March 2025 C++ Object Persistence with ODB

21.3 SQL Server Connection and Connection Factory

Whenever a connection is requested, the pool factory first checks if there is an unused connection

that can be returned. If there is none, the pool factory checks the max_connections value to

see if a new connection can be created. If the total number of connections maintained by the pool

is less than this value, then a new connection is created and returned. Otherwise, the caller is

blocked until a connection becomes available.

When a connection is released, the pool factory first checks if there are blocked callers waiting

for a connection. If so, then one of them is unblocked and is given the connection. Otherwise, the

pool factory checks whether the total number of connections maintained by the pool is greater

than the min_connections value. If that’s the case, the connection is closed. Otherwise, the

connection is added to the pool of available connections to be returned on the next request. In

other words, if the number of connections maintained by the pool exceeds min_connections
and there are no callers waiting for a new connection, the pool will close the excess connections.

If the max_connections value is 0, then the pool will create a new connection whenever all

of the existing connections are in use. If the min_connections value is 0, then the pool will

never close a connection and instead maintain all the connections that were ever created.

The create() virtual function is called whenever the pool needs to create a new connection.

By deriving from the connection_pool_factory class and overriding this function we can

implement custom connection establishment and configuration.

If you pass NULL as the connection factory to one of the database constructors, then the

connection_pool_factory instance will be created by default with the min and max

connections values set to 0. The following code fragment shows how we can pass our own

connection factory instance:

#include <odb/database.hxx>

#include <odb/mssql/database.hxx>
#include <odb/mssql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
 unique_ptr<odb::mssql::connection_factory> f (
 new odb::mssql::connection_pool_factory (20));

 unique_ptr<odb::database> db (
 new mssql::database (argc, argv, false, "", 0, f));
}

Revision 2.6, March 2025422 C++ Object Persistence with ODB

21.3 SQL Server Connection and Connection Factory

21.4 SQL Server Exceptions

The SQL Server ODB runtime library defines the following SQL Server-specific exceptions:

namespace odb
{
 namespace mssql
 {
 class database_exception: odb::database_exception
 {
 public:
 class record
 {
 public:
 SQLINTEGER
 error () const;

 const std::string&
 sqlstate () const;

 const std::string&
 message () const;
 };

 using records = std::vector<record>;

 using size_type = records::size_type;
 using iterator = records::const_iterator;

 iterator
 begin () const;

 iterator
 end () const;

 size_type
 size () const;

 virtual const char*
 what () const throw ();
 };

 class cli_exception: odb::exception
 {
 public:
 virtual const char*
 what () const throw ();
 };

 class long_data_reload: odb::exception

423Revision 2.6, March 2025 C++ Object Persistence with ODB

21.4 SQL Server Exceptions

 {
 public:
 virtual const char*
 what () const throw ();
 };
 }
}

You will need to include the <odb/mssql/exceptions.hxx> header file to make these

exceptions available in your application.

The odb::mssql::database_exception is thrown if an SQL Server database operation

fails. The SQL Server-specific error information is stored as a series of records, each containing

the error code as a signed 4-byte integer, the SQLSTATE code, and the message string. All this

information is also combined and returned in a human-readable form by the what() function.

The odb::mssql::cli_exception is thrown by the command line parsing constructor of

the odb::mssql::database class if the SQL Server option values are missing or invalid.

The what() function returns a human-readable description of an error.

The odb::mssql::long_data_reload is thrown if an attempt is made to re-load an object

or view with long data as part of a query result iteration. For more information, refer to Section

21.1, "SQL Server Type Mapping".

21.5 SQL Server Limitations

The following sections describe SQL Server-specific limitations imposed by the current SQL

Server and ODB runtime versions.

21.5.1 Query Result Caching

SQL Server ODB runtime implementation does not perform query result caching (Section 4.4,

"Query Result") even when explicitly requested. The ODBC API and the SQL Server Native

Client ODBC driver support interleaving execution of multiple prepared statements on a single

connection. As a result, it is possible to have multiple uncached results and calls to other database

functions do not invalidate them. The only limitation of the uncached SQL Server results is the

unavailability of the result::size() function. If you call this function on an SQL Server

query result, then the odb::result_not_cached exception (Section 3.14, "ODB Excep­

tions") is always thrown. Future versions of the SQL Server ODB runtime library may add

support for result caching.

Revision 2.6, March 2025424 C++ Object Persistence with ODB

21.5 SQL Server Limitations

21.5.2 Foreign Key Constraints

ODB assumes the standard SQL behavior which requires that foreign key constraints checking is

deferred until the transaction is committed. The only behavior supported by SQL Server is to

check such constraints immediately. As a result, by default, schemas generated by the ODB

compiler for SQL Server have foreign key definitions commented out. They are retained only for

documentation.

You can override the default behavior and instruct the ODB compiler to generate non-deferrable

foreign keys by specifying the --fkeys-deferrable-mode not_deferrable ODB

compiler option. Note, however, that in this case the order in which you persist, update, and erase

objects within a transaction becomes important.

21.5.3 Unique Constraint Violations

Due to the granularity of the ODBC error codes, it is impossible to distinguish between the dupli­

cate primary key and other unique constraint violations. As a result, when making an object

persistent, the SQL Server ODB runtime will translate all unique constraint violation errors to the

object_already_persistent exception (Section 3.14, "ODB Exceptions").

21.5.4 Multi-threaded Windows Applications

Multi-threaded Windows applications must use the _beginthread()/_beginthreadex()
and _endthread()/_endthreadex() CRT functions instead of the CreateThread()
and EndThread() Win32 functions to start and terminate threads. This is a limitation of the

ODBC implementation on Windows.

21.5.5 Affected Row Count and DDL Statements

SQL Server always returns zero as the number of affected rows for DDL statements. In particular,

this means that the database::execute() (Section 3.12, "Executing Native SQL State­

ments") function will always return zero for such statements.

21.5.6 Long Data and Auto Object Ids, ROWVERSION

SQL Server 2005 has a bug that causes it to fail on an INSERT or UPDATE statement with the

OUTPUT clause (used to return automatically assigned object ids as well as ROWVERSION
values) if one of the inserted columns is long data. The symptom of this bug in ODB is an excep­

tion thrown by the database::persist() or database::update() function when used

on an object that contains long data and has an automatically assigned object id or uses

ROWVERSION-based optimistic concurrency (Section 21.1.1, "ROWVERSION Support"). The

error message reads "This operation conflicts with another pending operation on this transaction.

The operation failed."

425Revision 2.6, March 2025 C++ Object Persistence with ODB

21.5.2 Foreign Key Constraints

For automatically assigned object ids ODB includes a workaround for this bug which uses a less

efficient method to obtain id values for objects that contain long data. To enable this workaround

you need to specify that the generated code will be used with SQL Server 2005 or later by

passing the --mssql-server-version 9.0 ODB compiler option.

For ROWVERSION-based optimistic concurrency no workaround is currently provided. The ODB

compiler will issue an error for objects that use ROWVERSION for optimistic concurrency and

containing long data.

21.5.7 Long Data and By-Value Accessors/Modifiers

As discussed in Section 14.4.5, "get/set/access", by-value accessor and modifier expressions

cannot be used with data members of long data types. The SQL Server ODB runtime uses stream­

ing for reading/writing long data directly from/to data members. As a result, by-reference acces­

sors and modifiers should be used for these data types.

21.5.8 Bulk Update and ROWVERSION

The bulk update operation (Section 15.3, "Bulk Database Operations") is not yet supported for

persistent classes that use ROWVERSION-based optimistic concurrency. For such classes the bulk

update() function is not available. The bulk persist and erase support is still provided.

21.6 SQL Server Index Definitions

When the index pragma (Section 14.7, "Index Definition Pragmas") is used to define an SQL

Server index, the type clause specifies the index type (for example, UNIQUE, CLUSTERED),

the method clause is not used, and the options clause specifies additional index properties.

The column options can be used to specify the sort order. For example:

#pragma db object
class object
{
 ...

 std::string name_;

 #pragma db index \
 type("UNIQUE CLUSTERED") \
 member(name_, "DESC") \
 options("WITH(FILLFACTOR = 80)")
};

Revision 2.6, March 2025426 C++ Object Persistence with ODB

21.6 SQL Server Index Definitions

21.7 SQL Server Stored Procedures

ODB native views (Section 10.6, "Native Views") can be used to call SQL Server stored proce­

dures. For example, assuming we are using the person class from Chapter 2, "Hello World

Example" (and the corresponding person table), we can create a stored procedure that given the

min and max ages returns some information about all the people in that range:

CREATE PROCEDURE dbo.person_range (
 @min_age SMALLINT,
 @max_age SMALLINT)
AS
 SELECT age, first, last FROM person
 WHERE age >= @min_age AND age <= @max_age;

Given the above stored procedure we can then define an ODB view that can be used to call it and

retrieve its result:

#pragma db view query("EXEC person_range (?)")
struct person_range
{
 unsigned short age;
 std::string first;
 std::string last;
};

The following example shows how we can use the above view to print the list of people in a

specific age range:

using query = odb::query<person_range>;
using result = odb::result<person_range>;

transaction t (db.begin ());

result r (
 db.query<person_range> (
 query::_val (1) + "," + query::_val (18)));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
 cerr << i->first << " " << i->last << " " << i->age << endl;

t.commit ();

Note that as with all native views, the order and types of data members must match those of

columns in the SELECT list inside the stored procedure.

There are also a number of limitations when it comes to calling SQL Server stored procedures

with ODB views. There is currently no support for output parameters, however, this is planned

for a future version. In the meantime, to call a stored procedure that has output parameters we

427Revision 2.6, March 2025 C++ Object Persistence with ODB

21.7 SQL Server Stored Procedures

have to use a wrapper procedure that converts such parameters to a SELECT result. For example,

given the following procedure that calculates the age range of the people in our database:

CREATE PROCEDURE dbo.person_age_range (
 @min_age SMALLINT = NULL OUTPUT,
 @max_age SMALLINT = NULL OUTPUT)
AS
 SELECT @min_age = MIN(age), @max_age = MAX(max) FROM person;

We can create a wrapper procedure like this:

CREATE PROCEDURE dbo.person_age_range_odb
AS
 DECLARE @min_age SMALLINT, @max_age SMALLINT;
 EXEC person_age_range @min_age OUTPUT, @max_age OUTPUT;
 SELECT @min_age, @max_age;

And a view like this:

#pragma db view query("EXEC person_age_range_odb")
struct person_age_range
{
 unsigned short min_age;
 unsigned short max_age;
};

Which we can then use to call the stored procedure:

transaction t (db.begin ());

person_age_range ar (db.query_value<person_age_range> ());
cerr << ar.min_age << " " << ar.max_age << endl;

t.commit ();

In SQL Server, a stored procedure can produce multiple results. For example, if a stored proce­

dure executes several SELECT statements, then the result of calling such a procedure consists of

multiple row sets, one for each SELECT statement. Because such multiple row sets can contain

varying number and type of columns, they cannot be all extracted into a single view. Conse­

quently, these kind of stored procedures are currently not supported.

A stored procedure may also produce no row sets at all. For example, a stored procedure that only

executes DML statements would exhibit this behavior. To call such a procedure we use an empty

view, for example:

Revision 2.6, March 2025428 C++ Object Persistence with ODB

21.7 SQL Server Stored Procedures

CREATE PROCEDURE dbo.insert_person (
 @first VARCHAR(512),
 @last VARCHAR(512),
 @age SMALLINT)
AS
 INSERT INTO person(first, last, age)
 VALUES(@first, @last, @age);

#pragma db view
struct no_result {};

transaction t (db.begin ());

db.query_one<no_result> (
 "EXEC insert_person" +
 query::_val ("John") + "," +
 query::_val ("Doe") + "," +
 query::_val (21));

t.commit ();

Finally, an SQL Server stored procedure can also return an integer status code. Similar to output

parameters, this code can only be observed by an ODB view if it is converted to a SELECT
result. For more information on how to do this and for other examples of stored procedure calls,

refer to the mssql/stored-proc test in the odb-tests package.

429Revision 2.6, March 2025 C++ Object Persistence with ODB

21.7 SQL Server Stored Procedures

PART III PROFILES

Part III covers the integration of ODB with popular C++ frameworks and libraries. It consists of

the following chapters.

22 Profiles Introduction

23 Boost Profile

24 Qt Profile

Revision 2.6, March 2025430 C++ Object Persistence with ODB

PART III PROFILES

22 Profiles Introduction

ODB profiles are a generic mechanism for integrating ODB with widely-used C++ frameworks

and libraries. A profile provides glue code which allows you to seamlessly persist various compo­

nents, such as smart pointers, containers, and value types found in these frameworks or libraries.

The code necessary to implement a profile is packaged into the so called profile library. For

example, the Boost profile implementation is provided by the libodb-boost profile library.

Besides linking the profile library to our application, it is also necessary to let the ODB compiler

know which profiles we are using. This is accomplished with the --profile (or -p alias)

option. For example:

odb --profile boost ...

Some profiles, especially those covering frameworks or libraries that consist of multiple

sub-libraries, provide sub-profiles that allow you to pick and choose which components you

would like to use in your application. For example, the boost profile contains the

boost/data-time sub-profile. If we are only interested in the date_time types, then we

can pass boost/data-time instead of boost to the --profile option, for example:

odb --profile boost/date-time ...

To summarize, you will need to perform the following steps in order to make use of a profile in

your application:

1. ODB compiler: if necessary, specify the path to the profile library headers (-I option).

2. ODB compiler: specify the profile you would like to use with the --profile option.

3. C++ compiler: if necessary, specify the path to the profile library headers (normally -I
option).

4. Linker: link the profile library to the application.

The remaining chapters in this part of the manual describe the standard profiles provided by

ODB.

431Revision 2.6, March 2025 C++ Object Persistence with ODB

22 Profiles Introduction

23 Boost Profile

The ODB profile implementation for Boost is provided by the libodb-boost library and

consists of multiple sub-profiles corresponding to the individual Boost libraries. To enable all the

available Boost sub-profiles, pass boost as the profile name to the --profile ODB compiler

option. Alternatively, you can enable only specific sub-profiles by passing individual sub-profile

names to --profile. The following sections in this chapter discuss each Boost sub-profile in

detail. The boost example in the odb-examples package shows how to enable and use the

Boost profile.

Some sub-profiles may throw exceptions to indicate error conditions, such as the inability to store

a specific value in a particular database system. All such exceptions derive from the

odb::boost::exception class which in turn derives from the root of the ODB exception

hierarchy, class odb::exception (Section 3.14, "ODB Exceptions"). The

odb::boost::exception class is defined in the <odb/boost/exception.hxx>
header file and has the same interface as odb::exception. Concrete exceptions that can be

thrown by the Boost sub-profiles are described in the following sections.

23.1 Smart Pointers Library

The smart-ptr sub-profile provides persistence support for a subset of smart pointers from the

Boost smart_ptr library. To enable only this profile, pass boost/smart-ptr to the

--profile ODB compiler option.

The currently supported smart pointers are boost::shared_ptr and boost::weak_ptr.

For more information on using smart pointers as pointers to objects and views, refer to Section

3.3, "Object and View Pointers" and Chapter 6, "Relationships". For more information on using

smart pointers as pointers to values, refer to Section 7.3, "Pointers and NULL Value Semantics".

When used as a pointer to a value, only boost::shared_ptr is supported. For example:

#pragma db object
class person
{
 ...

 #pragma db null
 boost::shared_ptr<std::string> middle_name_;
};

To provide finer grained control over object relationship loading, the smart-ptr sub-profile

also provides the lazy counterparts for the above pointers:

odb::boost::lazy_shared_ptr and odb::boost::lazy_weak_ptr. You will

need to include the <odb/boost/lazy-ptr.hxx> header file to make the lazy variants

available in your application. For a description of the lazy pointer interface and semantics refer to

Revision 2.6, March 2025432 C++ Object Persistence with ODB

23 Boost Profile

Section 6.4, "Lazy Pointers". The following example shows how we can use these smart pointers

to establish a relationship between persistent objects.

class employee;

#pragma db object
class position
{
 ...

 #pragma db inverse(position_)
 odb::boost::lazy_weak_ptr<employee> employee_;
};

#pragma db object
class employee
{
 ...

 #pragma db not_null
 boost::shared_ptr<position> position_;
};

Besides providing persistence support for the above smart pointers, the smart-ptr sub-profile

also changes the default pointer (Section 3.3, "Object and View Pointers") to

boost::shared_ptr. In particular, this means that database functions that return dynami­

cally allocated objects and views will return them as boost::shared_ptr pointers. To over­

ride this behavior, add the --default-pointer option specifying the alternative pointer type

after the --profile option.

23.2 Unordered Containers Library

The unordered sub-profile provides persistence support for the containers from the Boost

unordered library. To enable only this profile, pass boost/unordered to the --profile
ODB compiler option.

The supported containers are boost::unordered_set, boost::unordered_map,

boost::unordered_multiset, and boost::unordered_multimap. For more infor­

mation on using the set and multiset containers with ODB, refer to Section 5.2, "Set and Multiset

Containers". For more information on using the map and multimap containers with ODB, refer to

Section 5.3, "Map and Multimap Containers". The following example shows how the

unordered_set container may be used within a persistent object.

433Revision 2.6, March 2025 C++ Object Persistence with ODB

23.2 Unordered Containers Library

#pragma db object
class person
{
 ...
 boost::unordered_set<std::string> emails_;
};

23.3 Multi-Index Container Library

The multi-index sub-profile provides persistence support for

boost::multi_index_container from the Boost Multi-Index library. To enable only this

profile, pass boost/multi-index to the --profile ODB compiler option. The following

example shows how multi_index_container may be used within a persistent object.

namespace mi = boost::multi_index;

#pragma db object
class person
{
 ...

 using emails =
 mi::multi_index_container<
 std::string,
 mi::indexed_by<
 mi::sequenced<>,
 mi::ordered_unique<mi::identity<std::string>>
 >
 >;

 emails emails_;
};

Note that a multi_index_container instantiation is stored differently in the database

depending on whether it has any sequenced or random_access indexes. If it does, then it is

treated as an ordered container (Section 5.1, "Ordered Containers") with the first such index

establishing the order. Otherwise, it is treated as a set container (Section 5.2, "Set and Multiset

Containers").

Note also that there is a terminology clash between ODB and Boost Multi-Index. The ODB term

ordered container translates to Multi-Index terms sequenced index and random access index

while the ODB term set container translates to Multi-Index terms ordered index and hashed

index.

The emails container from the above example is stored as an ordered container. In contrast, the

following aliases container is stored as a set.

Revision 2.6, March 2025434 C++ Object Persistence with ODB

23.3 Multi-Index Container Library

namespace mi = boost::multi_index;

#pragma db value
struct name
{
 std::string first;
 std::string last;
};

bool operator< (const name&, const name&);

#pragma db object
class person
{
 ...

 using aliases =
 mi::multi_index_container<
 name,
 mi::indexed_by<
 mi::ordered_unique<mi::identity<name>>
 mi::ordered_non_unique<
 mi::member<name, std::string, &name::first>
 >,
 mi::ordered_non_unique<
 mi::member<name, std::string, &name::last>
 >
 >
 > ;

 aliases aliases_;
};

23.4 Optional Library

The optional sub-profile provides persistence support for the boost::optional container

from the Boost optional library. To enable only this profile, pass boost/optional to the

--profile ODB compiler option.

In a relational database boost::optional is mapped to a column that can have a NULL
value. Similar to odb::nullable (Section 7.3, "Pointers and NULL Value Semantics"), it can

be used to add the NULL semantics to existing C++ types. For example:

#include <boost/optional.hpp>

#pragma db object
class person
{
 ...

435Revision 2.6, March 2025 C++ Object Persistence with ODB

23.4 Optional Library

 std::string first_; // TEXT NOT NULL
 boost::optional<std::string> middle_; // TEXT NULL
 std::string last_; // TEXT NOT NULL
};

Note also that similar to odb::nullable, when this profile is used, the NULL values are auto­

matically enabled for data members of the boost::optional type.

23.5 Date Time Library

The date-time sub-profile provides persistence support for a subset of types from the Boost

date_time library. It is further subdivided into two sub-profiles, gregorian and

posix_time. The gregorian sub-profile provides support for types from the

boost::gregorian namespace, while the posix-time sub-profile provides support for

types from the boost::posix_time namespace. To enable the entire date-time
sub-profile, pass boost/date-time to the --profile ODB compiler option. To enable

only the gregorian sub-profile, pass boost/date-time/gregorian, and to enable only

the posix-time sub-profile, pass boost/date-time/posix-time.

The only type that the gregorian sub-profile currently supports is gregorian::date. The

types currently supported by the posix-time sub-profile are posix_time::ptime and

posix_time::time_duration. The manner in which these types are persisted is database

system dependent and is discussed in the sub-sections that follow. The example below shows how

gregorian::date may be used within a persistent object.

#pragma db object
class person
{
 ...
 boost::gregorian::date date_of_birth_;
};

Concrete exceptions that can be thrown by the date-time sub-profile implementation are

presented below.

namespace odb
{
 namespace boost
 {
 namespace date_time
 {
 struct special_value: odb::boost::exception
 {
 virtual const char*
 what () const throw ();
 };

Revision 2.6, March 2025436 C++ Object Persistence with ODB

23.5 Date Time Library

 struct value_out_of_range: odb::boost::exception
 {
 virtual const char*
 what () const throw ();
 };
 }
 }
}

You will need to include the <odb/boost/date-time/exceptions.hxx> header file to

make these exceptions available in your application.

The special_value exception is thrown if an attempt is made to store a Boost date-time

special value that cannot be represented in the target database. The value_out_of_range

exception is thrown if an attempt is made to store a date-time value that is out of the target

database range. The specific conditions under which these exceptions are thrown are database

system dependent and are discussed in more detail in the following sub-sections.

23.5.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost

date_time types and the MySQL database types.

Boost date_time Type MySQL Type Default NULL Semantics

gregorian::date DATE NULL

posix_time::ptime DATETIME NULL

posix_time::time_duration TIME NULL

The Boost special value date_time::not_a_date_time is stored as a NULL value in a

MySQL database.

The posix-time sub-profile implementation also provides support for mapping

posix_time::ptime to the TIMESTAMP MySQL type. However, this mapping has to be

explicitly requested using the db type pragma (Section 14.4.3, "type"), as shown in the

following example:

#pragma db object
class person
{
 ...
 #pragma db type("TIMESTAMP") not_null
 boost::posix_time::ptime updated_;
};

437Revision 2.6, March 2025 C++ Object Persistence with ODB

23.5.1 MySQL Database Type Mapping

Starting with MySQL version 5.6.4 it is possible to store fractional seconds up to microsecond

precision in TIME, DATETIME, and TIMESTAMP columns. However, to enable sub-second

precision, the corresponding type with the desired precision has to be specified explicitly, as

shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("DATETIME(6)") // Microsecond precision.
 boost::posix_time::ptime updated_;
};

Alternatively, you can enable sub-second precision on the per-type basis, for example:

#pragma db value(boost::posix_time::ptime) type("DATETIME(6)")

#pragma db object
class person
{
 ...
 boost::posix_time::ptime created_; // Microsecond precision.
 boost::posix_time::ptime updated_; // Microsecond precision.
};

Some valid Boost date-time values cannot be stored in a MySQL database. An attempt to persist

any Boost date-time special value other than date_time::not_a_date_time will result in

the special_value exception. An attempt to persist a Boost date-time value that is out of the

MySQL type range will result in the out_of_range exception. Refer to the MySQL documen­

tation for more information on the MySQL data type ranges.

23.5.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost

date_time types and the SQLite database types.

Boost date_time Type SQLite Type Default NULL Semantics

gregorian::date TEXT NULL

posix_time::ptime TEXT NULL

posix_time::time_duration TEXT NULL

Revision 2.6, March 2025438 C++ Object Persistence with ODB

23.5.2 SQLite Database Type Mapping

The Boost special value date_time::not_a_date_time is stored as a NULL value in an

SQLite database.

The date-time sub-profile implementation also provides support for mapping grego­
rian::date and posix_time::ptime to the INTEGER SQLite type, with the integer

value representing the UNIX time. Similarly, an alternative mapping for

posix_time::time_duration to the INTEGER type represents the duration as a number

of seconds. These mappings have to be explicitly requested using the db type pragma (Section

14.4.3, "type"), as shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("INTEGER")
 boost::gregorian::date born_;
};

Some valid Boost date-time values cannot be stored in an SQLite database. An attempt to persist

any Boost date-time special value other than date_time::not_a_date_time will result in

the special_value exception. An attempt to persist a negative

posix_time::time_duration value as SQLite TEXT will result in the out_of_range

exception.

23.5.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost

date_time types and the PostgreSQL database types.

Boost date_time Type PostgreSQL Type Default NULL Semantics

gregorian::date DATE NULL

posix_time::ptime TIMESTAMP NULL

posix_time::time_duration TIME NULL

The Boost special value date_time::not_a_date_time is stored as a NULL value in a

PostgreSQL database. posix_time::ptime values representing the special values

date_time::pos_infin and date_time::neg_infin are stored as the special Post­

greSQL TIMESTAMP values infinity and -infinity, respectively.

Some valid Boost date-time values cannot be stored in a PostgreSQL database. The PostgreSQL

TIME type represents a clock time, and can therefore only store positive durations with a total

length of time less than 24 hours. An attempt to persist a posix_time::time_duration

439Revision 2.6, March 2025 C++ Object Persistence with ODB

23.5.3 PostgreSQL Database Type Mapping

value outside of this range will result in the value_out_of_range exception. An attempt to

persist a posix_time::time_duration value representing any special value other than

date_time::not_a_date_time will result in the special_value exception.

23.5.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost

date_time types and the Oracle database types.

Boost date_time Type Oracle Type
Default NULL Seman­

tics

gregorian::date DATE NULL

posix_time::ptime TIMESTAMP NULL

posix_time::time_duration
INTERVAL DAY TO
SECOND

NULL

The Boost special value date_time::not_a_date_time is stored as a NULL value in an

Oracle database.

The date-time sub-profile implementation also provides support for mapping

posix_time::ptime to the DATE Oracle type with fractional seconds that may be stored in a

ptime instance being ignored. This alternative mapping has to be explicitly requested using the

db type pragma (Section 14.4.3, "type"), as shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("DATE")
 boost::posix_time::ptime updated_;
};

Some valid Boost date-time values cannot be stored in an Oracle database. An attempt to persist a

gregorian::date, posix_time::ptime, or posix_time::time_duration value

representing any special value other than date_time::not_a_date_time will result in the

special_value exception.

Revision 2.6, March 2025440 C++ Object Persistence with ODB

23.5.4 Oracle Database Type Mapping

23.5.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported Boost

date_time types and the SQL Server database types.

Boost date_time Type SQL Server Type Default NULL Semantics

gregorian::date DATE NULL

posix_time::ptime DATETIME2 NULL

posix_time::time_duration TIME NULL

The Boost special value date_time::not_a_date_time is stored as a NULL value in an

SQL Server database.

Note that the DATE, TIME, and DATETIME2 types are only available in SQL Server 2008 and

later. SQL Server 2005 only supports the DATETIME and SMALLDATETIME date-time types.

The new types are also unavailable when connecting to an SQL Server 2008 or later with the

SQL Server 2005 Native Client ODBC driver.

The date-time sub-profile implementation provides support for mapping

posix_time::ptime to the DATETIME and SMALLDATETIME types, however, this

mapping has to be explicitly requested using the db type pragma (Section 14.4.3, "type"), as

shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("DATETIME")
 boost::posix_time::ptime updated_;
};

Some valid Boost date-time values cannot be stored in an SQL Server database. An attempt to

persist a gregorian::date, posix_time::ptime, or posix_time::time_dura­
tion value representing any special value other than date_time::not_a_date_time will

result in the special_value exception. The range of the TIME type in SQL server is from

00:00:00.0000000 to 23:59:59.9999999. An attempt to persist a

posix_time::time_duration value out of this range will result in the

value_out_of_range exception.

441Revision 2.6, March 2025 C++ Object Persistence with ODB

23.5.5 SQL Server Database Type Mapping

23.6 Uuid Library

The uuid sub-profile provides persistence support for the uuid type from the Boost uuid
library. To enable only this profile, pass boost/uuid to the --profile ODB compiler

option.

The manner in which these types are persisted is database system dependent and is discussed in

the sub-sections that follow. By default a data member of the uuid type is mapped to a database

column with NULL enabled and nil uuid instances are stored as a NULL value. However, you

can change this behavior by declaring the data member NOT NULL with the not_null pragma

(Section 14.4.6, "null/not_null"). In this case, or if the data member is an object id, the

implementation will store nil uuid instances as zero UUID values

({00000000-0000-0000-0000-000000000000}). For example:

#pragma db object
class object
{
 ...

 boost::uuids::uuid x_; // Nil values stored as NULL.

 #pragma db not_null
 boost::uuids::uuid y_; // Nil values stored as zero.
};

23.6.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the

MySQL database type.

Boost Type MySQL Type Default NULL Semantics

boost::uuids::uuid BINARY(16) NULL

23.6.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the

SQLite database type.

Boost Type SQLite Type Default NULL Semantics

boost::uuids::uuid BLOB NULL

Revision 2.6, March 2025442 C++ Object Persistence with ODB

23.6 Uuid Library

23.6.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the Post­

greSQL database type.

Boost Type PostgreSQL Type Default NULL Semantics

boost::uuids::uuid UUID NULL

23.6.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the

Oracle database type.

Boost Type Oracle Type Default NULL Semantics

boost::uuids::uuid RAW(16) NULL

23.6.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the Boost uuid type and the SQL

Server database type.

Boost Type SQL Server Type Default NULL Semantics

boost::uuids::uuid UNIQUEIDENTIFIER NULL

443Revision 2.6, March 2025 C++ Object Persistence with ODB

23.6.3 PostgreSQL Database Type Mapping

24 Qt Profile

The ODB profile implementation for Qt is provided by the libodb-qt library. Both Qt4 and

Qt5 as well as C++98/03 and C++11 are supported.

The Qt profile consists of multiple sub-profiles corresponding to the common type groups within

Qt. Currently, only types from the QtCore module are supported. To enable all the available Qt

sub-profiles, pass qt as the profile name to the --profile ODB compiler option. Alterna­

tively, you can enable only specific sub-profiles by passing individual sub-profile names to

--profile. The following sections in this chapter discuss each Qt sub-profile in detail. The qt
example in the odb-examples package shows how to enable and use the Qt profile.

Some sub-profiles may throw exceptions to indicate error conditions, such as the inability to store

a specific value in a particular database system. All such exceptions derive from the

odb::qt::exception class which in turn derives from the root of the ODB exception hierar­

chy, class odb::exception (Section 3.14, "ODB Exceptions"). The odb::qt::excep­
tion class is defined in the <odb/qt/exception.hxx> header file and has the same inter­

face as odb::exception. Concrete exceptions that can be thrown by the Qt sub-profiles are

described in the following sections.

24.1 Basic Types Library

The basic sub-profile provides persistence support for basic types defined by Qt. To enable

only this profile, pass qt/basic to the --profile ODB compiler option.

The currently supported basic types are QString, QByteArray, and QUuid. The manner in

which these types are persisted is database system dependent and is discussed in the sub-sections

that follow. The example below shows how QString may be used within a persistent object.

#pragma db object
class Person
{
 ...
 QString name_;
};

By default a data member of the QUuid type is mapped to a database column with NULL enabled

and null QUuid instances are stored as a NULL value. However, you can change this behavior by

declaring the data member NOT NULL with the not_null pragma (Section 14.4.6,

"null/not_null"). In this case, or if the data member is an object id, the implementation will

store null QUuid instances as zero UUID values

({00000000-0000-0000-0000-000000000000}). For example:

Revision 2.6, March 2025444 C++ Object Persistence with ODB

24 Qt Profile

#pragma db object
class object
{
 ...

 QUuid x_; // Null values stored as NULL.

 #pragma db not_null
 QUuid y_; // Null values stored as zero.
};

24.1.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt

types and the MySQL database types.

Qt Type MySQL Type Default NULL Semantics

QString TEXT/VARCHAR(128) NULL

QByteArray BLOB NULL

QUuid BINARY(16) NULL

Instances of the QString and QByteArray types are stored as a NULL value if their

isNull() member function returns true.

Note also that the QString type is mapped differently depending on whether a member of this

type is an object id or not. If the member is an object id, then for this member QString is

mapped to the VARCHAR(128) MySQL type. Otherwise, it is mapped to TEXT.

The basic sub-profile also provides support for mapping QString to the CHAR, NCHAR, and

NVARCHAR MySQL types. However, these alternative mappings have to be explicitly requested

using the db type pragma (Section 14.4.3, "type"), as shown in the following example:

#pragma db object
class Person
{
 ...

 #pragma db type("CHAR(2)") not_null
 QString licenseState_;
};

445Revision 2.6, March 2025 C++ Object Persistence with ODB

24.1.1 MySQL Database Type Mapping

24.1.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt

types and the SQLite database types.

Qt Type SQLite Type Default NULL Semantics

QString TEXT NULL

QByteArray BLOB NULL

QUuid BLOB NULL

Instances of the QString and QByteArray types are stored as a NULL value if their

isNull() member function returns true.

24.1.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt

types and the PostgreSQL database types.

Qt Type PostgreSQL Type Default NULL Semantics

QString TEXT NULL

QByteArray BYTEA NULL

QUuid UUID NULL

Instances of the QString and QByteArray types are stored as a NULL value if their

isNull() member function returns true.

The basic sub-profile also provides support for mapping QString to the CHAR and VARCHAR

PostgreSQL types. However, these alternative mappings have to be explicitly requested using the

db type pragma (Section 14.4.3, "type"), as shown in the following example:

#pragma db object
class Person
{
 ...

 #pragma db type("CHAR(2)") not_null
 QString licenseState_;
};

Revision 2.6, March 2025446 C++ Object Persistence with ODB

24.1.2 SQLite Database Type Mapping

24.1.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt

types and the Oracle database types.

Qt Type Oracle Type Default NULL Semantics

QString VARCHAR2(512) NULL

QByteArray BLOB NULL

QUuid RAW(16) NULL

Instances of the QString and QByteArray types are stored as a NULL value if their

isNull() member function returns true.

The basic sub-profile also provides support for mapping QString to the CHAR, NCHAR,

NVARCHAR, CLOB, and NCLOB Oracle types, and for mapping QByteArray to the RAW Oracle

type. However, these alternative mappings have to be explicitly requested using the db type
pragma (Section 14.4.3, "type"), as shown in the following example:

#pragma db object
class Person
{
 ...

 #pragma db type("CLOB") not_null
 QString firstName_;

 #pragma db type("RAW(16)") null
 QByteArray uuid_;
};

24.1.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported basic Qt

types and the SQL Server database types.

Qt Type SQL Server Type Default NULL Semantics

QString VARCHAR(512)/VARCHAR(256) NULL

QByteArray VARBINARY(max) NULL

QUuid UNIQUEIDENTIFIER NULL

447Revision 2.6, March 2025 C++ Object Persistence with ODB

24.1.4 Oracle Database Type Mapping

Instances of the QString and QByteArray types are stored as a NULL value if their

isNull() member function returns true.

Note also that the QString type is mapped differently depending on whether a member of this

type is an object id or not. If the member is an object id, then for this member QString is

mapped to the VARCHAR(256) SQL Server type. Otherwise, it is mapped to VARCHAR(512).

The basic sub-profile also provides support for mapping QString to the CHAR, NCHAR,

NVARCHAR, TEXT, and NTEXT SQL Server types, and for mapping QByteArray to the

BINARY and IMAGE SQL Server types. However, these alternative mappings have to be explic­

itly requested using the db type pragma (Section 14.4.3, "type"), as shown in the following

example:

#pragma db object
class Person
{
 ...

 #pragma db type("NVARCHAR(256)") not_null
 QString firstName_;

 #pragma db type("BINARY(16)") null
 QByteArray uuid_;
};

24.2 Smart Pointers Library

The smart-ptr sub-profile provides persistence support the Qt smart pointers. To enable only

this profile, pass qt/smart-ptr to the --profile ODB compiler option.

The currently supported smart pointers are QSharedPointer and QWeakPointer. For more

information on using smart pointers as pointers to objects and views, refer to Section 3.3, "Object

and View Pointers" and Chapter 6, "Relationships". For more information on using smart pointers

as pointers to values, refer to Section 7.3, "Pointers and NULL Value Semantics". When used as a

pointer to a value, only QSharedPointer is supported. For example:

#pragma db object
class person
{
 ...

 #pragma db null
 QSharedPointer<QString> middle_name_;
};

Revision 2.6, March 2025448 C++ Object Persistence with ODB

24.2 Smart Pointers Library

To provide finer grained control over object relationship loading, the smart-ptr sub-profile

also provides the lazy counterparts for the above pointers: QLazySharedPointer and

QLazyWeakPointer. You will need to include the <odb/qt/lazy-ptr.hxx> header file

to make the lazy variants available in your application. For a description of the lazy pointer inter­

face and semantics refer to Section 6.4, "Lazy Pointers". The following example shows how we

can use these smart pointers to establish a relationship between persistent objects.

class Employee;

#pragma db object
class Position
{
 ...

 #pragma db inverse(position_)
 QLazyWeakPointer<Employee> employee_;
};

#pragma db object
class Employee
{
 ...

 #pragma db not_null
 QSharedPointer<Position> position_;
};

Besides providing persistence support for the above smart pointers, the smart-ptr sub-profile

also changes the default pointer (Section 3.3, "Object and View Pointers") to QShared­
Pointer. In particular, this means that database functions that return dynamically allocated

objects and views will return them as QSharedPointer pointers. To override this behavior,

add the --default-pointer option specifying the alternative pointer type after the

--profile option.

24.3 Containers Library

The containers sub-profile provides persistence support for Qt containers. To enable only

this profile, pass qt/containers to the --profile ODB compiler option.

The currently supported ordered containers are QVector, QList, and QLinkedList.

Supported map containers are QMap, QMultiMap, QHash, and QMultiHash. The supported

set container is QSet. For more information on using containers with ODB, refer to Chapter 5,

"Containers". The following example shows how the QSet container may be used within a

persistent object.

449Revision 2.6, March 2025 C++ Object Persistence with ODB

24.3 Containers Library

#pragma db object
class Person
{
 ...
 QSet<QString> emails_;
};

The containers sub-profile also provide a change-tracking equivalent for QList (Section

24.3.1, "Change-Tracking QList") with support for other Qt container equivalents planned for

future releases. For general information on change-tracking containers refer to Section 5.4,

"Change-Tracking Containers".

24.3.1 Change-Tracking QList

Class template QOdbList, defined in <odb/qt/list.hxx>, is a change-tracking equivalent

for QList. It is implemented in terms of QList and is implicit-convertible to and

implicit-constructible from const QList&. In particular, this means that we can use QOdb­
List instance anywhere const QList& is expected. In addition, QOdbList constant iterator

(const_iterator) is the same type as that of QList.

QOdbList incurs 2-bit per element overhead in order to store the change state. It cannot be

stored unordered in the database (Section 14.4.19 "unordered") but can be used as an inverse

side of a relationship (6.2 "Bidirectional Relationships"). In this case, no change tracking is

performed since no state for such a container is stored in the database.

The number of database operations required to update the state of QOdbList corresponds well

to the complexity of QList functions, except for prepend()/push_front(). In particular,

adding or removing an element from the back of the list (for example, with

append()/push_back() and removeLast()/pop_back()), requires only a single

database statement execution. In contrast, inserting or erasing an element at the beginning or in

the middle of the list will require a database statement for every element that follows it.

QOdbList replicates most of the QList interface as defined in both Qt4 and Qt5 and includes

support for C++11. However, functions and operators that provide direct write access to the

elements had to be altered or disabled in order to support change tracking. Additional functions

used to interface with QList and to control the change tracking state were also added. The

following listing summarizes the differences between the QOdbList and QList interfaces. Any

QList function or operator not mentioned in this listing has exactly the same signature and

semantics in QOdbList. Functions and operators that were disabled are shown as commented

out and are followed by functions/operators that replace them.

template <typename T>
class QOdbList
{
 ...

Revision 2.6, March 2025450 C++ Object Persistence with ODB

24.3.1 Change-Tracking QList

 // Element access.
 //

 //T& operator[] (int);
 T& modify (int);

 //T& first();
 T& modifyFirst();

 //T& last();
 T& modifyLast();

 //T& front();
 T& modify_front();

 //T& back();
 T& modify_back();

 // Iterators.
 //
 using const_iterator = typename QList<T>::const_iterator;

 class iterator
 {
 ...

 // Element Access.
 //

 //reference operator* () const;
 const_reference operator* () const;
 reference modify () const;

 //pointer operator-> () const;
 const_pointer operator-> () const;

 //reference operator[] (difference_type);
 const_reference operator[] (difference_type);
 reference modify (difference_type) const;

 // Interfacing with QList::iterator.
 //
 typename QList<T>::iterator base () const;
 };

 // Return QList iterators. The begin() functions mark all
 // the elements as modified.
 //
 typename QList<T>::iterator mbegin ();
 typename QList<T>::iterator modifyBegin ();

451Revision 2.6, March 2025 C++ Object Persistence with ODB

24.3.1 Change-Tracking QList

 typename QList<T>::iterator mend ();
 typename QList<T>::iterator modifyEnd ();

 // Interfacing with QList.
 //
 QOdbList (const QList<T>&);
 QOdbList (QList<T>&&); // C++11 only.

 QOdbList& operator= (const QList<T>&);
 QOdbList& operator= (QList<T>&&);

 operator const QList<T>& () const;
 QList<T>& base ();
 const QList<T>& base () const;

 // Change tracking.
 //
 bool _tracking () const;
 void _start () const;
 void _stop () const;
 void _arm (transaction&) const;
};

The following example highlights some of the differences between the two interfaces. QList
versions are commented out.

#include <QtCore/QList>
#include <odb/qt/list.hxx>

void f (const QList<int>&);

QOdbList<int> l ({1, 2, 3});

f (l); // Ok, implicit conversion.

if (l[1] == 2) // Ok, const access.
 //l[1]++;
 l.modify (1)++;

//l.last () = 4;
l.modifyLast () = 4;

for (auto i (l.begin ()); i != l.end (); ++i)
{
 if (*i != 0) // Ok, const access.
 //*i += 10;
 i.modify () += 10;
}

qSort (l.modifyBegin (), l.modifyEnd ());

Revision 2.6, March 2025452 C++ Object Persistence with ODB

24.3.1 Change-Tracking QList

Note also the subtle difference between copy/move construction and copy/move assignment of

QOdbList instances. While copy/move constructor will copy/move both the elements as well as

their change state, in contrast, assignment is tracked as any other change to the vector content.

The QListIterator and QMutableListIterator equivalents are also provided. These

are QOdbListIterator and QMutableOdbListIterator and are defined in

<odb/qt/list-iterator.hxx> and <odb/qt/mutable-list-iterator.hxx>,

respectively.

QOdbListIterator has exactly the same interface and semantics as QListIterator. In

fact, we can use QListIterator to iterate over a QOdbList instance.

QMutableOdbListIterator also has exactly the same interface as QMutableListIt­
erator. Note, however, that any element that such an iterator passes over with the call to

next() is marked as modified.

24.4 Date Time Library

The date-time sub-profile provides persistence support for the Qt date-time types. To enable

only this profile, pass qt/date-time to the --profile ODB compiler option.

The currently supported date-time types are QDate, QTime, and QDateTime. The manner in

which these types are persisted is database system dependent and is discussed in the sub-sections

that follow. The example below shows how QDate may be used within a persistent object.

#pragma db object
class Person
{
 ...
 QDate dateOfBirth_;
};

The single concrete exception that can be thrown by the date-time sub-profile implementation

is presented below.

namespace odb
{
 namespace qt
 {
 namespace date_time
 {
 struct value_out_of_range: odb::qt::exception
 {
 virtual const char*
 what () const throw ();

453Revision 2.6, March 2025 C++ Object Persistence with ODB

24.4 Date Time Library

 };
 }
 }
}

You will need to include the <odb/qt/date-time/exceptions.hxx> header file to

make this exception available in your application.

The value_out_of_range exception is thrown if an attempt is made to store a date-time

value that is out of the target database range. The specific conditions under which it is thrown is

database system dependent and is discussed in more detail in the following sub-sections.

24.4.1 MySQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt

date-time types and the MySQL database types.

Qt Date Time Type MySQL Type Default NULL Semantics

QDate DATE NULL

QTime TIME NULL

QDateTime DATETIME NULL

Instances of the QDate, QTime, and QDateTime types are stored as a NULL value if their

isNull() member function returns true.

The date-time sub-profile implementation also provides support for mapping QDateTime to

the TIMESTAMP MySQL type. However, this mapping has to be explicitly requested using the

db type pragma (Section 14.4.3, "type"), as shown in the following example:

#pragma db object
class Person
{
 ...
 #pragma db type("TIMESTAMP") not_null
 QDateTime updated_;
};

Starting with MySQL version 5.6.4 it is possible to store fractional seconds up to microsecond

precision in TIME, DATETIME, and TIMESTAMP columns. However, to enable sub-second

precision, the corresponding type with the desired precision has to be specified explicitly, as

shown in the following example:

Revision 2.6, March 2025454 C++ Object Persistence with ODB

24.4.1 MySQL Database Type Mapping

#pragma db object
class Person
{
 ...
 #pragma db type("DATETIME(3)") // Millisecond precision.
 QDateTime updated_;
};

Alternatively, you can enable sub-second precision on the per-type basis, for example:

#pragma db value(QDateTime) type("DATETIME(3)")

#pragma db object
class Person
{
 ...
 QDateTime created_; // Millisecond precision.
 QDateTime updated_; // Millisecond precision.
};

Some valid Qt date-time values cannot be stored in a MySQL database. An attempt to persist a Qt

date-time value that is out of the MySQL type range will result in the out_of_range excep­

tion. Refer to the MySQL documentation for more information on the MySQL data type ranges.

24.4.2 SQLite Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt

date-time types and the SQLite database types.

Qt Date Time Type SQLite Type Default NULL Semantics

QDate TEXT NULL

QTime TEXT NULL

QDateTime TEXT NULL

Instances of the QDate, QTime, and QDateTime types are stored as a NULL value if their

isNull() member function returns true.

The date-time sub-profile implementation also provides support for mapping QDate and

QDateTime to the SQLite INTEGER type, with the integer value representing the UNIX time.

Similarly, an alternative mapping for QTime to the INTEGER type represents a clock time as the

number of seconds since midnight. These mappings have to be explicitly requested using the

db type pragma (Section 14.4.3, "type"), as shown in the following example:

455Revision 2.6, March 2025 C++ Object Persistence with ODB

24.4.2 SQLite Database Type Mapping

#pragma db object
class Person
{
 ...
 #pragma db type("INTEGER")
 QDate born_;
};

Some valid Qt date-time values cannot be stored in an SQLite database. An attempt to persist any

Qt date-time value representing a negative UNIX time (any point in time prior to the

1970-01-01 00:00:00 UNIX time epoch) as an SQLite INTEGER will result in the

out_of_range exception.

24.4.3 PostgreSQL Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt

date-time types and the PostgreSQL database types.

Qt Date Time Type PostgreSQL Type Default NULL Semantics

QDate DATE NULL

QTime TIME NULL

QDateTime TIMESTAMP NULL

Instances of the QDate, QTime, and QDateTime types are stored as a NULL value if their

isNull() member function returns true.

24.4.4 Oracle Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt

date-time types and the Oracle database types.

Qt Date Time Type Oracle Type Default NULL Semantics

QDate DATE NULL

QTime INTERVAL DAY(0) TO SECOND(3) NULL

QDateTime TIMESTAMP(3) NULL

Instances of the QDate, QTime, and QDateTime types are stored as a NULL value if their

isNull() member function returns true.

Revision 2.6, March 2025456 C++ Object Persistence with ODB

24.4.3 PostgreSQL Database Type Mapping

The date-time sub-profile implementation also provides support for mapping QDateTime to

the DATE Oracle type with fractional seconds that may be stored in a QDateTime instance

being ignored. This alternative mapping has to be explicitly requested using the db type
pragma (Section 14.4.3, "type"), as shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("DATE")
 QDateTime updated_;
};

24.4.5 SQL Server Database Type Mapping

The following table summarizes the default mapping between the currently supported Qt

date-time types and the SQL Server database types.

Qt Date Time Type SQL Server Type Default NULL Semantics

QDate DATE NULL

QTime TIME(3) NULL

QDateTime DATETIME2(3) NULL

Instances of the QDate, QTime, and QDateTime types are stored as a NULL value if their

isNull() member function returns true.

Note that the DATE, TIME, and DATETIME2 types are only available in SQL Server 2008 and

later. SQL Server 2005 only supports the DATETIME and SMALLDATETIME date-time types.

The new types are also unavailable when connecting to an SQL Server 2008 or later with the

SQL Server 2005 Native Client ODBC driver.

The date-time sub-profile implementation provides support for mapping QDateTime to the

DATETIME and SMALLDATETIME types, however, this mapping has to be explicitly requested

using the db type pragma (Section 14.4.3, "type"), as shown in the following example:

#pragma db object
class person
{
 ...
 #pragma db type("DATETIME")
 QDateTime updated_;
};

457Revision 2.6, March 2025 C++ Object Persistence with ODB

24.4.5 SQL Server Database Type Mapping

	Preface
	About This Document
	More Information

	PART I€€ OBJECT-RELATIONAL MAPPING
	1 Introduction
	1.1 Architecture and Workflow
	1.2 Benefits
	1.3 Supported C++ Standards

	2 Hello World Example
	2.1 Declaring Persistent Classes
	2.2 Generating Database Support Code
	2.3 Compiling and Running
	2.4 Making Objects Persistent
	2.5 Querying the Database for Objects
	2.6 Updating Persistent Objects
	2.7 Defining and Using Views
	2.8 Deleting Persistent Objects
	2.9 Changing Persistent Classes
	2.10 Working with Multiple Databases
	2.11 Summary

	3 Working with Persistent Objects
	3.1 Concepts and Terminology
	3.2 Declaring Persistent Objects and Values
	3.3 Object and View Pointers
	3.4 Database
	3.5 Transactions
	3.6 Connections
	3.7 Error Handling and Recovery
	3.8 Making Objects Persistent
	3.9 Loading Persistent Objects
	3.10 Updating Persistent Objects
	3.11 Deleting Persistent Objects
	3.12 Executing Native SQL Statements
	3.13 Tracing SQL Statement Execution
	3.14 ODB Exceptions

	4 Querying the Database
	4.1 ODB Query Language
	4.2 Parameter Binding
	4.3 Executing a Query
	4.4 Query Result
	4.5 Prepared Queries

	5 Containers
	5.1 Ordered Containers
	5.2 Set and Multiset Containers
	5.3 Map and Multimap Containers
	5.4 Change-Tracking Containers
	5.4.1 Change-Tracking vector

	5.5 Using Custom Containers

	6 Relationships
	6.1 Unidirectional Relationships
	6.1.1 To-One Relationships
	6.1.2 To-Many Relationships

	6.2 Bidirectional Relationships
	6.2.1 One-to-One Relationships
	6.2.2 One-to-Many Relationships
	6.2.3 Many-to-Many Relationships

	6.3 Circular Relationships
	6.4 Lazy Pointers
	6.5 Using Custom Smart Pointers

	7 Value Types
	7.1 Simple Value Types
	7.2 Composite Value Types
	7.2.1 Composite Object Ids
	7.2.2 Composite Value Column and Table Names

	7.3 Pointers and NULL Value Semantics

	8 Inheritance
	8.1 Reuse Inheritance
	8.2 Polymorphism Inheritance
	8.2.1 Performance and Limitations

	8.3 Mixed Inheritance

	9 Sections
	9.1 Sections and Inheritance
	9.2 Sections and Optimistic Concurrency
	9.3 Sections and Lazy Pointers
	9.4 Sections and Change-Tracking Containers

	10 Views
	10.1 Object Views
	10.2 Object Loading Views
	10.3 Table Views
	10.4 Mixed Views
	10.5 View Query Conditions
	10.6 Native Views
	10.7 Other View Features and Limitations

	11 Session
	11.1 Object Cache
	11.2 Custom Sessions

	12 Optimistic Concurrency
	13 Database Schema Evolution
	13.1 Object Model Version and Changelog
	13.2 Schema Migration
	13.3 Data Migration
	13.3.1 Immediate Data Migration
	13.3.2 Gradual Data Migration
	13.4 Soft Object Model Changes
	13.4.1 Reuse Inheritance Changes
	13.4.2 Polymorphism Inheritance Changes

	14 ODB Pragma Language
	14.1 Object Type Pragmas
	14.1.1 table
	14.1.2 pointer
	14.1.3 abstract
	14.1.4 readonly
	14.1.5 optimistic
	14.1.6 no_id
	14.1.7 callback
	14.1.8 schema
	14.1.9 polymorphic
	14.1.10 session
	14.1.11 definition
	14.1.12 transient
	14.1.13 sectionable
	14.1.14 deleted
	14.1.15 bulk
	14.1.16 options

	14.2 View Type Pragmas
	14.2.1 object
	14.2.2 table
	14.2.3 query
	14.2.4 pointer
	14.2.5 callback
	14.2.6 definition
	14.2.7 transient

	14.3 Value Type Pragmas
	14.3.1 type
	14.3.2 id_type
	14.3.3 null/not_null
	14.3.4 default
	14.3.5 options
	14.3.6 readonly
	14.3.7 definition
	14.3.8 transient
	14.3.9 unordered
	14.3.10 index_type
	14.3.11 key_type
	14.3.12 value_type
	14.3.13 value_null/value_not_null
	14.3.14 id_options
	14.3.15 index_options
	14.3.16 key_options
	14.3.17 value_options
	14.3.18 id_column
	14.3.19 index_column
	14.3.20 key_column
	14.3.21 value_column

	14.4 Data Member Pragmas
	14.4.1 id
	14.4.2 auto
	14.4.3 type
	14.4.4 id_type
	14.4.5 get/set/access
	14.4.6 null/not_null
	14.4.7 default
	14.4.8 options
	14.4.9 column (object, composite value)
	14.4.10 column (view)
	14.4.11 transient
	14.4.12 readonly
	14.4.13 virtual
	14.4.14 inverse
	14.4.15 on_delete
	14.4.16 version
	14.4.17 index
	14.4.18 unique
	14.4.19 unordered
	14.4.20 table
	14.4.21 load/update
	14.4.22 section
	14.4.23 added
	14.4.24 deleted
	14.4.25 index_type
	14.4.26 key_type
	14.4.27 value_type
	14.4.28 value_null/value_not_null
	14.4.29 id_options
	14.4.30 index_options
	14.4.31 key_options
	14.4.32 value_options
	14.4.33 id_column
	14.4.34 index_column
	14.4.35 key_column
	14.4.36 value_column
	14.4.37 points_to

	14.5 Namespace Pragmas
	14.5.1 pointer
	14.5.2 table
	14.5.3 schema
	14.5.4 session

	14.6 Object Model Pragmas
	14.6.1 version

	14.7 Index Definition Pragmas
	14.8 Database Type Mapping Pragmas
	14.8.1 C++ Type Mapping Pragmas
	14.8.2 Database Type Mapping Pragmas

	14.9 C++ Compiler Warnings
	14.9.1 GNU C++
	14.9.2 Visual C++
	14.9.3 Sun C++
	14.9.4 IBM XL C++
	14.9.5 HP aC++
	14.9.6 Clang

	15 Advanced Techniques and Mechanisms
	15.1 Transaction Callbacks
	15.2 Persistent Class Template Instantiations
	15.3 Bulk Database Operations

	PART II€€ DATABASE SYSTEMS
	16 Multi-Database Support
	16.1 Static Multi-Database Support
	16.2 Dynamic Multi-Database Support
	16.2.2 Dynamic Loading of Database Support Code

	17 MySQL Database
	17.1 MySQL Type Mapping
	17.1.1 String Type Mapping
	17.1.2 Binary Type Mapping
	17.1.3 Mixed Automatic/0 Object Id Assignment

	17.2 MySQL Database Class
	17.3 MySQL Connection and Connection Factory
	17.4 MySQL Exceptions
	17.5 MySQL Limitations
	17.5.1 Foreign Key Constraints

	17.6 MySQL Index Definitions
	17.7 MySQL Stored Procedures

	18 SQLite Database
	18.1 SQLite Type Mapping
	18.1.1 String Type Mapping
	18.1.2 Binary Type Mapping
	18.1.3 Incremental BLOB/TEXT I/O
	18.1.4 Mixed Automatic/Manual Object Id Assignment

	18.2 SQLite Database Class
	18.3 SQLite Connection and Connection Factory
	18.4 Attached SQLite Databases
	18.5 SQLite Exceptions
	18.6 SQLite Limitations
	18.6.1 Query Result Caching
	18.6.2 Automatic Assignment of Object Ids
	18.6.3 Foreign Key Constraints
	18.6.4 Constraint Violations
	18.6.5 Sharing of Queries
	18.6.6 Forced Rollback
	18.6.7 Database Schema Evolution

	18.7 SQLite Index Definitions

	19 PostgreSQL Database
	19.1 PostgreSQL Type Mapping
	19.1.1 String Type Mapping
	19.1.2 Binary Type and UUID Mapping

	19.2 PostgreSQL Database Class
	19.3 PostgreSQL Connection and Connection Factory
	19.4 PostgreSQL Exceptions
	19.5 PostgreSQL Limitations
	19.5.1 Query Result Caching
	19.5.2 Foreign Key Constraints
	19.5.3 Unique Constraint Violations
	19.5.4 Date-Time Format
	19.5.5 Timezones
	19.5.6 NUMERIC Type Support
	19.5.7 Bulk Operations Support

	19.6 PostgreSQL Index Definitions
	19.7 PostgreSQL Stored Procedures and Functions

	20 Oracle Database
	20.1 Oracle Type Mapping
	20.1.1 String Type Mapping
	20.1.2 Binary Type Mapping

	20.2 Oracle Database Class
	20.3 Oracle Connection and Connection Factory
	20.4 Oracle Exceptions
	20.5 Oracle Limitations
	20.5.1 Identifier Truncation
	20.5.2 Query Result Caching
	20.5.3 Foreign Key Constraints
	20.5.4 Unique Constraint Violations
	20.5.5 Large FLOAT and NUMBER Types
	20.5.6 Timezones
	20.5.7 LONG Types
	20.5.8 LOB Types and By-Value Accessors/Modifiers
	20.5.9 Database Schema Evolution

	20.6 Oracle Index Definitions

	21 Microsoft SQL Server Database
	21.1 SQL Server Type Mapping
	21.1.1 String Type Mapping
	21.1.2 Binary Type and UNIQUEIDENTIFIER Mapping
	21.1.3 ROWVERSION Mapping
	21.1.4 Long String and Binary Types

	21.2 SQL Server Database Class
	21.3 SQL Server Connection and Connection Factory
	21.4 SQL Server Exceptions
	21.5 SQL Server Limitations
	21.5.1 Query Result Caching
	21.5.2 Foreign Key Constraints
	21.5.3 Unique Constraint Violations
	21.5.4 Multi-threaded Windows Applications
	21.5.5 Affected Row Count and DDL Statements
	21.5.6 Long Data and Auto Object Ids, ROWVERSION
	21.5.7 Long Data and By-Value Accessors/Modifiers
	21.5.8 Bulk Update and ROWVERSION

	21.6 SQL Server Index Definitions
	21.7 SQL Server Stored Procedures

	PART III€€ PROFILES
	22 Profiles Introduction
	23 Boost Profile
	23.1 Smart Pointers Library
	23.2 Unordered Containers Library
	23.3 Multi-Index Container Library
	23.4 Optional Library
	23.5 Date Time Library
	23.5.1 MySQL Database Type Mapping
	23.5.2 SQLite Database Type Mapping
	23.5.3 PostgreSQL Database Type Mapping
	23.5.4 Oracle Database Type Mapping
	23.5.5 SQL Server Database Type Mapping

	23.6 Uuid Library
	23.6.1 MySQL Database Type Mapping
	23.6.2 SQLite Database Type Mapping
	23.6.3 PostgreSQL Database Type Mapping
	23.6.4 Oracle Database Type Mapping
	23.6.5 SQL Server Database Type Mapping

	24 Qt Profile
	24.1 Basic Types Library
	24.1.1 MySQL Database Type Mapping
	24.1.2 SQLite Database Type Mapping
	24.1.3 PostgreSQL Database Type Mapping
	24.1.4 Oracle Database Type Mapping
	24.1.5 SQL Server Database Type Mapping

	24.2 Smart Pointers Library
	24.3 Containers Library
	24.3.1 Change-Tracking QList

	24.4 Date Time Library
	24.4.1 MySQL Database Type Mapping
	24.4.2 SQLite Database Type Mapping
	24.4.3 PostgreSQL Database Type Mapping
	24.4.4 Oracle Database Type Mapping
	24.4.5 SQL Server Database Type Mapping

